JNTUA R23 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

B. Tech (Regular-Full time)

(Effective for the students admitted into I year from the Academic Year **2023-24** onwards)

CMPUTER SCIENCE & ENGINEERING I & II YEAR COURSE STRUCTURE AND SYLLABUS

B.TECH. – CSE- COURSE STRUCTURE & SYLLABUS – R23 (Applicable from the academic year 2023-24 onwards)

S.No.	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	МС	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	МС	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	МС	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

INDUCTION PROGRAMME

B.Tech. – I Year I Semester

S.No.	Course code	Title	L	Т	Р	Credits
1	23A52201T	Communicative English	2	0	0	2
2	23A51202T	Chemistry	3	0	0	3
3	23A54101	Linear Algebra & Calculus	3	0	0	3
4	23A01201T	Basic Civil & Mechanical Engineering	3	0	0	3
5	23A05101T	Introduction to Programming	3	0	0	3
6	23A52201P	Communicative English Lab	0	0	2	1
7	23A51202P	Chemistry Lab	0	0	2	1
8	23A03201	Engineering Workshop	0	0	3	1.5
9	23A05101P	Computer Programming Lab	0	0	3	1.5
10	23A99201	Health and wellness, Yoga and Sports	-	-	1	0.5
	Total			0	11	19.5

B.Tech. – I Year II Semester

S.No.	Course code	Title	L/D	Т	Р	Credits
1	23A56101T	Engineering Physics	3	0	0	3
2	23A54201	Differential Equations & Vector Calculus	3	0	0	3
3	23A02101T	Basic Electrical & Electronics Engineering	3	0	0	3
4	23A03101T	Engineering Graphics	1	0	4	3
5	23A05102	IT Workshop	0	0	2	1
6	23A05201T	Data Structures	3	0	0	3
7	23A56101P	Engineering Physics Lab	0	0	2	1
8	23A02101P	Electrical & Electronics Engineering Workshop	0	0	3	1.5
9	23A05201P	Data Structures Lab	0	0	3	1.5
10	23A99101	NSS/NCC/Scouts & Guides/Community Service	-	-	1	0.5
		Total	13	00	15	20.5

S.No	Course code	Title	L	Т	Р	Credits
1	23A54301	Discrete Mathematics & Graph Theory	3	0	0	3
2	23A52301	Universal Human Values 2- Understanding Harmony and Ethical human conduct	2	1	0	3
3	23A30402	Digital Logic and Computer Organization	3	0	0	3
4	23A05302T	Advanced Data Structures & Algorithms Analysis	3	0	0	3
5	23A05303T	Object-Oriented Programming Through JAVA	3	0	0	3
6	23A05302P	Advanced Data Structures and Algorithms Analysis Lab	0	0	3	1.5
7	23A05303P	Object-Oriented Programming Through JAVA Lab	0	0	3	1.5
8	23A05304	Python programming	0	1	2	2
9	23A99301	Environmental Science	2	0	0	-
		Total	15	2	10	20

B. Tech – II Year I Semester

B.Tech– II Year II Semester

S.No.	Course code	Title	L	Т	Р	Cred its	
1	23A52402a	Managerial Economics and	2	0	0	2	
		Financial Analysis					
	23A52402b	Organizational Behavior					
	23A52402c	Business Environment					
2	23A54401	Probability & Statistics	3	0	0	3	
3	23A35401T	Operating Systems	3	0	0	3	
4	23A05402T	Database Management Systems	3	0	0	3	
5	23A05403	Software Engineering	3	0	0	3	
6	23A35401P	Operating Systems Lab	0	0	3	1.5	
7	23A05402P	Database Management Systems Lab	0	0	3	1.5	
8	23A52401	Full Stack Development-1	0	1	2	2	
9	23A99401	Design Thinking & Innovation	1	0	2	2	
	Total 15 1 12 21						
Mar	Mandatory Community Service Project Internship of 08 weeks duration during summer						
		, ucution					

I Year B.Tech. CSE – I Semester

L	Т	Р	С
2	0	0	2

(23A52201T) COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives:

The main objective of introducing this course, *Communicative English*, is to facilitate effective listening, Reading, Speaking and Writing skills among the students. It enhances the same in their comprehending abilities, oral presentations, reporting useful information and providing knowledge of grammatical structures and vocabulary. This course helps the students to make them effective in speaking and writing skills and to make them industry ready.

Course Outcomes:

CO1: Understand the context, topic, and pieces of specific information from social or Transactional dialogues.

CO2: Applygrammaticalstructurestoformulatesentencesandcorrectwordforms.

CO3: Analyzediscoursemarkerstospeakclearlyonaspecifictopicininformaldiscussions.

 $\textbf{CO4:} Evaluate \ reading \ / \ listening \ text \ sand \ to \ write \ summaries \ based \ on \ global \ -$

Comprehension of these texts.

CO5: Create a coherent paragraph, essay, and resume.

UNIT I

Lesson: HUMAN VALUES: Gift of Magi (Short Story)

Listening:	Identifying the topic, the context and specific pieces of information by
a 11	listening to short audio texts and answering a series of questions.
Speaking:	Asking and answering general questions on familiar topics such as home, family work studies and interests: introducing oneself and others
Reading: Skir	nming to get the main idea of a text; scanning to look for specific pieces of
	information.
Writing:	Mechanics of Writing-Capitalization, Spellings, Punctuation-Parts of
	Sentences.
Grammar:	Parts of Speech, Basic Sentence Structures-forming questions
Vocabulary:	Synonyms, Antonyms, Affixes (Prefixes/Suffixes), Root words.
UNIT II	
Lesson: NAT	URE: The Brook by Alfred Tennyson (Poem)
Listening:	Answering a series of questions about main ideas and supporting ideas after listening to audio texts.

- **Speaking:** Discussion in pairs /small groups on specific topics followed by short structure talks.
- **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Writing: Structure of a paragraph - Paragraph writing (specific topics)

Grammar: Cohesive devices -linkers, use of articles and zero article; prepositions.

Vocabulary: Homonyms, Homophones, Homographs.

UNIT III

Lesson: BIOGRAPHY: Elon Musk

- **Listening:** Listening for global comprehension and summarizing what is listened to.
- **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed
- **Reading:** Reading a text in detail by making basic inferences-recognizing and interpreting specific context clues; strategies to use text clues for comprehension.

Writing: Summarizing, Note-making, paraphrasing

Grammar: Verbs - tenses; subject-verb agreement; Compound words, Collocations

Vocabulary: Compound words, Collocations

UNIT IV

Lesson: INSPIRATION: The Toys of Peace by Saki

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in text stocon vey information, reveal trends /patterns/ relationships, communicate processes or display complicated data.

- Writing: Letter Writing: Official Letters, Resumes
- Grammar: Reporting verbs, Direct & Indirect speech, Active & Passive Voice
- Vocabulary: Words often confused, Jargons

UNIT V

Lesson: MOTIVATION: The Power of Intrapersonal Communication (An Essay)

- **Listening:** Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.
- **Speaking:** Formal oral presentations on topics from academic contexts

Reading: Reading comprehension.

Writing: Writing structured essays on specific topics.

Grammar: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Vocabulary: Technical Jargons

Textbooks:

- 1. Pathfinder: Communicative English for Undergraduate Students, 1st Edition, Orient Black Swan, 2023 (Units 1,2 & 3)
- 2. Empowering with Language by Cengage Publications, 2023 (Units 4 & 5)

- 1. Dubey, Sham Ji & Co. English for Engineers, Vikas Publishers, 2020
- 2. Bailey, Stephen. Academic writing: A Handbook for International Students. Routledge, 2014.
- 3. Murphy, Raymond. English Grammar in Use, Fourth Edition, Cambridge University Press, 2019.

4. Lewis, Norman. Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary. Anchor, 2014.

Web Resources:

GRAMMAR:

- 1. www.bbc.co.uk/learningenglish
- 2. https://dictionary.cambridge.org/grammar/british-grammar/
- 3. <u>www.eslpod.com/index.html</u>
- 4. https://www.learngrammar.net/
- 5. <u>https://english4today.com/english-grammar-online-with-quizzes/</u>
- 6. https://www.talkenglish.com/grammar/grammar.aspx

VOCABULARY

- 1. https://www.youtube.com/c/DailyVideoVocabulary/videos
- 2. https://www.youtube.com/channel/UC4cmBAit8i_NJZE8qK8sfpA

I Year B.Tech. CSE – I Semester

L	Т	Р	С
3	0	0	3

(23A51202T) CHEMISTRY

(Common to EEE, ECE, CSE, IT) & allied branches)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electro chemistry and polymers
- To introduce instrumental methods, molecular machines and switches.

Course Outcomes: At the end of the course, the students will be able to:

CO1: Compare the materials of construction for battery and electro chemical sensors.

- **CO2**: Explain the preparation, properties, and applications of thermoplastics & thermosetting & elastomers conducting polymers.
- CO3: Explain the principles of spectrometry, slcinseparation of solid and liquid mixtures.

CO4: ApplytheprincipleofBanddiagramsintheapplicationofconductorsandsemiconductors.

CO5: Summarize the concepts of Instrumental methods.

UNIT I Structure and Bonding Models:

Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ^2 , particle in one dimensional box, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O2 and CO, etc. π -molecular orbital's of butadiene and benzene, calculation of bond order.

UNIT II Modern Engineering materials

Semiconductors – Introduction, basic concept, application

Super conductors-Introduction basic concept, applications.

Super capacitors: Introduction, Basic Concept-Classification – Applications.

Nano materials: Introduction, classification, properties and applications of Fullerenes, carbon nano tubes and Graphines nanoparticles.

UNIT III Electrochemistry and Applications

Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conduct metric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells –lithium-ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygenfuel cell– working of the cells. Polymer Electrolyte Membrane Fuel cells (PEMFC).

UNIT IV Polymer Chemistry

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, with specific examples and mechanisms of polymer formation.

Plastics –Thermo and Thermosetting plastics, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers–Buna-S, Buna-N–preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, – mechanism of conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl Lactic Acid (PLA).

UNIT V Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. UV-Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies, fundamental modes and selection rules, Instrumentation. Chromatography-Basic Principle, Classification-HPLC: Principle, Instrumentation and Applications.

Textbooks:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Juliode Paula and JamesKeeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

I Year B.Tech. CSE – I Semester

L	Т	Р	С
3	0	0	3

(23A54101) LINEAR ALGEBRA & CALCULUS (Common to All Branches of Engineering)

Course Objectives:

• To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- **CO1:** Develop and use of matrix algebra techniques that are needed by engineers for the practical applications.
- **CO2:** Utilize mean value theorems to real life problems.

CO3: Familiarize with functions of several variables which is useful in optimization.

CO4: Learn important tools of calculus in higher dimensions.

CO5: Familiarize with double and triple integrals of functions of several variables in two dimensions using Cartesian and polar coordinates and in three dimensions using cylindrical and spherical coordinates.

UNIT I Matrices

Rank of amatrixbyechel on form, normal form. Cauchy–Binet formulae (without proof). Inverse of Non- singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Jacobi and Gauss Seidel Iteration Methods.

UNIT II Eigen values, Eigenvectors and Orthogonal Transformation

Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT III Calculus

Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurintheorems with remainders (without proof), Problems and applications on the above theorems.

UNIT IV Partial differentiation and Applications (Multi variable calculus)

Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule, Directional derivative, Taylor's and Maclaurin's series expansion of functions of two variables. Jacobians, Functional dependence, maxima and minima of functions of two variables, method of Lagrange multipliers.

UNIT V Multiple Integrals (Multi variable Calculus)

Double integrals, triple integrals, change of order of integration, change of variables to polar, cylindrical and spherical coordinates. Finding areas (by double integrals) and volumes (by double integrals and triple integrals).

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, KhannaPublishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley &Sons, 2018, 10th Edition.

- 1. Thomas Calculus, George B.Thomas, MauriceD. WeirandJoelHass, Pearson Publishers,2018, 14th Edition.
- 2. Advanced Engineering Mathematics, R.K.JainandS.R.K.Iyengar,AlphaScienceInternationalLtd.,2021 5th Edition(9th reprint).
- 3. Advanced Modern Engineering Mathematics, GlynJames, Pearson publishers, 2018, 5th Edition.
- 4. Advanced Engineering Mathematics, Micheael Greenberg,, Pearson publishers, 9thedition
- 5. Higher Engineering Mathematics, H. K Das, Er. Rajnish Verma, S. Chand Publications, 2014, Third Edition (Reprint 2021)

I Year B.Tech. CSE – I Semester

L	Т	Р	C
3	0	0	3

(23A01201T) BASIC CIVIL AND MECHANICAL ENGINEERING (Common to All branches of Engineering)

Course Objectives:

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.
- Introduction to basic civil engineering materials and construction techniques.

Course Outcomes: On completion of the course, the student should be able to:

- CO1: Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society.
- CO2: Know the concepts of surveying and to understand the measurement of distances, angles and levels through surveying.
- CO3: Realize the importance of Transportation in nation's economy and the engineering measures related to Transportation.
- CO4: Understand the importance of Water Storage and Conveyance Structures so that the social responsibilities of water conservation will be appreciated.
- CO5: Understand the basic characteristics of Civil Engineering Materials and attain knowledge on prefabricated technology.

UNIT I

Basics of Civil Engineering: Role of Civil Engineers in Society- Various Disciplines of Civil Engineering- Structural Engineering- Geo-technical Engineering- Transportation Engineering - Hydraulics and Water Resources Engineering - Environmental Engineering-Scope of each discipline - Building Construction and Planning- Construction Materials-Cement - Aggregate - Bricks- Cement concrete- Steel. Introduction to Prefabricated construction Techniques.

UNIT II

Surveying: Objectives of Surveying- Horizontal Measurements- Angular Measurements-Introduction to Bearings Levelling instruments used for levelling -Simple problems on levelling and bearings-Contour mapping.

UNIT III

Transportation Engineering Importance of Transportation in Nation's economic development- Types of Highway Pavements- Flexible Pavements and Rigid Pavements - Simple Differences. Basics of Harbour, Tunnel, Airport, and Railway Engineering.

Water Resources and Environmental Engineering: Introduction, Sources of water- Quality of water- Specifications- Introduction to Hydrology–Rainwater Harvesting-Water Storage and Conveyance Structures (Simple introduction to Dams and Reservoirs).

Textbooks:

- 1. Basic Civil Engineering, M.S.Palanisamy, , Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.
- 2. Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition.
- 3. Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

Reference Books:

- 1. Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
- 2. Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
- 3. Irrigation Engineering and Hydraulic Structures Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
- 4. Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
- 5. Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART B: BASIC MECHANICAL ENGINEERING

Course Objectives: The students after completing the course are expected to

- Get familiarized with the scope and importance of Mechanical Engineering in different sectors and industries.
- Explain different engineering materials and different manufacturing processes.
- Provide an overview of different thermal and mechanical transmission systems and introduce basics of robotics and its applications.

Course Outcomes: On completion of the course, the student should be able to

CO1: Understand the different manufacturing processes.

CO2: Explain the basics of thermal engineering and its applications.

CO3: Describe the working of different mechanical power transmission systems and power plants.

CO4: Describe the basics of robotics and its applications.

UNIT I

Introduction to Mechanical Engineering: Role of Mechanical Engineering in Industries and Society- Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors.

Engineering Materials - Metals-Ferrous and Non-ferrous, Ceramics, Composites, Smart materials.

UNIT II

Manufacturing Processes: Principles of Casting, Forming, joining processes, Machining, Introduction to CNC machines, 3D printing, and Smart manufacturing.

Thermal Engineering – working principle of Boilers, Otto cycle, Diesel cycle, Refrigeration and air-conditioning cycles, IC engines, 2-Stroke and 4-Stroke engines, SI/CI Engines, Components of Electric and Hybrid Vehicles.

UNIT III

Power plants – working principle of Steam, Diesel, Hydro, Nuclear power plants. **Mechanical Power Transmission -** Belt Drives, Chain, Ropedrives, Gear Drives and their applications.

Introduction to Robotics - Joints & links, configurations, and applications of robotics.

(Note: The subject covers only the basic principles of Civil and Mechanical Engineering systems. The evaluation shall be intended to test only the fundamentals of the subject)

Textbooks:

- 1. Internal Combustion Engines by V.Ganesan, By Tata McGraw Hill publications (India) Pvt. Ltd.
- 2. A Tear book of Theory of Machines by S.S. Rattan, Tata McGraw Hill Publications, (India) Pvt. Ltd.
- 3. An introduction to Mechanical Engg by Jonathan Wicker and Kemper Lewis, Cengage learning India Pvt. Ltd.

- 1. AppuuKuttan KK, Robotics, I.K. International Publishing House Pvt. Ltd. Volume-I
- 2. 3D printing & Additive Manufacturing Technology- L. Jyothish Kumar, Pulak M Pandey, Springer publications
- 3. Thermal Engineering by Mahesh M Rathore Tata McGraw Hill publications (India) Pvt. Ltd.
- 4. G. Shanmugam and M.S.Palanisamy, Basic Civil and the Mechanical Engineering, Tata McGraw Hill publications (India) Pvt. Ltd.

I Year B.Tech. CSE– I Semester	L	Т	Р	С
	3	0	0	3

(23A05101T) INTRODUCTION TO PROGRAMMING

(Common to All branches of Engineering)

Course Objectives:

- To introduce students to the fundamentals of computer programming.
- To provide hands-on experience with coding and debugging.
- To foster logical thinking and problem-solving skills using programming.
- To familiarize students with programming concepts such as data types, control structures, functions, and arrays.
- To encourage collaborative learning and teamwork in coding projects.

Course Outcomes: A student after completion of the course will be able to

CO1: Understand basics of computers, the concept of algorithm and algorithmic thinking.

CO2: Analyse a problem and develop an algorithm to solve it.

CO3: Implement various algorithms using the C programming language.

CO4: Understand more advanced features of C language.

CO5: Develop problem-solving skills and the ability to debug and optimize the code.

UNIT I Introduction to Programming and Problem Solving

History of Computers, Basic organization of a computer: ALU, input-output units, memory, program counter, Introduction to Programming Languages, Basics of a Computer Program-Algorithms, flowcharts (Using Dia Tool), pseudo code. Introduction to Compilation and Execution, Primitive Data Types, Variables, and Constants, Basic Input and Output, Operations, Type Conversion, and Casting.

Problem solving techniques: Algorithmic approach, characteristics of algorithm, Problem solving strategies: Top-down approach, Bottom-up approach, Time and space complexities of algorithms.

UNIT II Control Structures

Simple sequential programs Conditional Statements (if, if-else, switch), Loops (for, while, do-while) Break and Continue.

UNIT III Arrays and Strings

Arrays indexing, memory model, programs with array of integers, two dimensional arrays, Introduction to Strings.

UNIT IV Pointers & User Defined Data types

Pointers, dereferencing and address operators, pointer and address arithmetic, array manipulation using pointers, User-defined data types-Structures and Unions.

UNIT V Functions & File Handling

Introduction to Functions, Function Declaration and Definition, Function call Return Types and Arguments, modifying parameters inside functions using pointers, arrays as parameters. Scope and Lifetime of Variables, Basics of File Handling

Note: The syllabus is designed with C Language as the fundamental language of implementation.

Textbooks:

- 1. "The C Programming Language", Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, 1988
- 2. Schaum's Outline of Programming with C, Byron S Gottfried, McGraw-Hill Education, 1996

- 1. Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008.
- 2. Programming in C, Rema Theraja, Oxford, 2016, 2nd edition
- 3. C Programming, A ProblemSolving Approach, Forouzan, Gilberg, Prasad, CENGAGE, 3rd edition

I Year B.Tech. CSE– I Semester

L	Т	Р	С
0	0	2	1

(23A52201P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives:

The main objective of introducing this course, Communicative English Laboratory, is to expose the students to a variety of self-instructional, learner friendly modes of language learning. The students will get trained in basic communication skills and also make them ready to face job interviews.

Course Outcomes:

CO1: Understand the different aspects of the English language proficiency with emphasis on LSRW skills.

CO2: Apply communication skills through various language learning activities.

CO3: Analyze the English speech sounds, stress, rhythm, intonation and syllable divisionfor better listening and speaking comprehension.

CO4: Evaluate and exhibit professionalism in participating in debates and group discussions. CO5: Create effective Course Objectives:

List of Topics:

- 1. Vowels & Consonants
- 2. Neutralization/Accent Rules
- 3. Communication Skills & JAM
- 4. Role Play or Conversational Practice
- 5. E-mail Writing
- 6. Resume Writing, Cover letter, SOP
- 7. Group Discussions-methods & practice
- 8. Debates Methods & Practice
- 9. PPT Presentations/ Poster Presentation
- 10. Interviews Skills

Suggested Software:

- Walden Infotech
- Young India Films

- 1. Raman Meenakshi, Sangeeta- Sharma. *Technical Communication*. Oxford Press.2018.
- 2. TaylorGrant: EnglishConversationPractice, TataMcGraw-HillEducationIndia, 2016
- 3. Hewing's, Martin. Cambridge Academic English(B2).CUP,2012.
- 4. J. Sethi & P.V. Dhamija. A Course in Phonetics and Spoken English, (2ndEd),Kindle, 2013

Web Resources:

Spoken English:

- 1. www.esl-lab.com
- 2. www.englishmedialab.com
- 3. <u>www.englishinteractive.net</u>
- 4. https://www.britishcouncil.in/english/online
- 5. http://www.letstalkpodcast.com/
- 6. <u>https://www.youtube.com/c/mmmEnglish_Emma/featured</u>
- 7. https://www.youtube.com/c/ArnelsEverydayEnglish/featured
- 8. https://www.youtube.com/c/engvidAdam/featured
- 9. https://www.youtube.com/c/EnglishClass101/featured
- 10. https://www.youtube.com/c/SpeakEnglishWithTiffani/playlists
- 11. https://www.youtube.com/channel/UCV1h cBE0Drdx19qkTM0WNw

Voice & Accent:

- 1. https://www.youtube.com/user/letstalkaccent/videos
- 2. https://www.youtube.com/c/EngLanguageClub/featured
- 3. https://www.youtube.com/channel/UC_OskgZBoS4dAnVUgJVexc
- 4. https://www.youtube.com/channel/UCNfm92h83W2i2ijc5Xwp_IA

I Year B.Tech. CSE – I Semester

L	Т	Р	С
0	0	2	1

(23A51202P) CHEMISTRY LAB

(Common to EEE, ECE, CSE, IT & allied branches)

Course Objectives:

• Verify the fundamental concepts with experiments.

Course Outcomes: At the end of the course, the students will be able to

- CO1: Determine the cell constant and conduct a neeofsolutions.
- CO2: Prepare advanced polymer Bakelite materials.
- CO3: Measure the strength of an acid present in secondary batteries.
- CO4: Analyse the IR spectra of some organic compounds.
- CO5: Calculate strength of acid in Pb-Acid battery.

List of Experiments:

- 1. Measurement of 10Dq by spectro photo metric method
- 2. Conduct metric titration of strong acid vs. strong base
- 3. Conduct metric titration of weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometer determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite
- 8. Verify Lambert-Beer's law
- 9. Wavelength measurement of sample through UV-Visible Spectroscopy
- 10. Identification of simple organic compounds by IR
- 11. Preparation of nanomaterials by precipitation method
- 12. Estimation of Ferrous Iron by Dichrometry

Reference:

• "Vogel's Quantitative Chemical Analysis 6th Edition 6th Edition" Pearson Publications by J. Mendham, R.C.Denney, J.D.Barnes and B. Sivasankar

I Year B.Tech. CSE – I Semester

L	Т	Р	С
0	0	3	1.5

(23A03201) ENGINEERING WORKSHOP

(Common to All branches of Engineering)

Course Objectives:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

Course Outcomes:

CO1: Identify workshop tools and their operational capabilities.

- CO2: Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and welding.
- CO3: Apply fitting operations in various applications.
- CO4: Apply basic electrical engineering knowledge for House Wiring Practice

SYLLABUS

- 1. **Demonstration**: Safety practices and precautions to be observed in workshop.
- 2. Wood Working: Familiarity with different types of woods and tools used in wood working and make following joints.
 - a) Half Lap joint b) Mortise and Ten on joint c) Corner Dovetail joint or Bridle joint
- 3. Sheet Metal Working: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets.

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

4. **Fitting:** Familiarity with different types of tools used in fitting and do the following fitting exercises.

a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two-wheeler tyre

- 5. **Electrical Wiring**: Familiarity with different types of basic electrical circuits and make the following connections.
 - a) Parallel and series b) Two-way switch c) God own lighting

d) Tube light e) Three phase motor f) Soldering of wires

- 6. **Foundry Trade:** Demonstration and practice on Moulding tools and processes, Preparation of Green Sand Moulds for given Patterns.
- 7. Welding Shop: Demonstration and practice on Arc Welding and Gas welding. Preparation of Lap joint and Butt joint.
- 8. **Plumbing:** Demonstration and practice of Plumbing tools, Preparation of Pipe joints with coupling for same diameter and with reducer for different diameters.

Textbooks:

- 1. Basic Workshop Technology: Manufacturing Process, Felix W.; Independently Published, 2019. Workshop Processes, Practices and Materials; Bruce J. Black, Routledge publishers, 5th Edn. 2015.
- 2. A Course in Workshop Technology Vol I. & II, B.S. Raghuwanshi, Dhanpath Rai & Co., 2015 & 2017.

- 1. Elements of Workshop Technology, Vol. I by S. K. Hajra Choudhury & Others, Media Promoters and Publishers, Mumbai. 2007, 14th edition
- 2. Workshop Practice by H. S. Bawa, Tata-McGraw Hill, 2004.
- 3. Wiring Estimating, Costing and Contracting; Soni P.M. & Upadhyay P.A.; Atul Prakashan, 2021-22.

I Year B.Tech. CSE– I Semester

L	Т	Р	С
0	0	3	1.5

(23A05101P) COMPUTER PROGRAMMING LAB (Common to All branches of Engineering)

Course Objectives:

The course aims to give students hands – on experience and train them on the concepts of the C- programming language.

Course Outcomes:

CO1: Read, understand, and trace the execution of programs written in C language.

CO2: Select the right control structure for solving the problem.

CO3: Develop C programs which utilize memory efficiently using programming constructs like pointers.

CO4: Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C.

UNIT I

WEEK 1

Objective: Getting familiar with the programming environment on the computer and writing the first program.

Suggested Experiments/Activities:

Tutorial 1: Problem-solving using Computers.

Lab1: Familiarization with programming environment

- i) Basic Linux environment and its editors like Vi, Vim & Emacs etc.
- ii) Exposure to Turbo C, gcc
- iii) Writing simple programs using printf(), scanf()

WEEK 2

Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation.

Suggested Experiments /Activities:

Tutorial 2: Problem-solving using Algorithms and Flow charts.

Lab 1: Converting algorithms/flow charts into C Source code.

Developing the algorithms/flowcharts for the following sample programs

- i) Sum and average of 3 numbers
- ii) Conversion of Fahrenheit to Celsius and vice versa
- iii) Simple interest calculation

WEEK 3

Objective: Learn how to define variables with the desired data-type, initialize them with appropriate values and how arithmetic operators can be used with variables and constants.

Suggested Experiments/Activities:

Tutorial 3: Variable types and type conversions:

Lab 3: Simple computational problems using arithmetic expressions.

- i) Finding the square root of a given number
- ii) Finding compound interest
- iii) Area of a triangle using heron's formulae
- iv) Distance travelled by an object

UNIT II

WEEK 4

Objective: Explore the full scope of expressions, type-compatibility of variables & constants and operators used in the expression and how operator precedence works.

Suggested Experiments/Activities:

Tutorial4: Operators and the precedence and as associativity:

Lab4: Simple computational problems using the operator' precedence and associativity

- i) Evaluate the following expressions.
 - a. A+B*C+(D*E) + F*G
 - b. A/B*C-B+A*D/3
 - c. A+++B---A
 - d. J = (i++) + (++i)
- ii) Find the maximum of three numbers using conditional operator
- iii) Take marks of 5 subjects in integers, and find the total, average in float

WEEK 5

Objective: Explore the full scope of different variants of "if construct" namely if-else, nullelse, if-else if*-else, switch and nested-if including in what scenario each one of them can be used and how to use them. Explore all relational and logical operators while writing conditionals for "if construct".

Suggested Experiments/Activities:

Tutorial 5: Branching and logical expressions:

Lab 5: Problems involving if-then-else structures.

- i) Write a C program to find the max and min of four numbers using if-else.
- ii) Write a C program to generate electricity bill.
- iii) Find the roots of the quadratic equation.
- iv) Write a C program to simulate a calculator using switch case.
- v) Write a C program to find the given year is a leap year or not.

WEEK 6

Objective: Explore the full scope of iterative constructs namely while loop, do-while loop and for loop in addition to structured jump constructs like break and continue including when each of these statements is more appropriate to use.

Suggested Experiments/Activities:

Tutorial 6: Loops, while and for loops

Lab 6: Iterative problems e.g., the sum of series

- i) Find the factorial of given number using any loop.
- ii) Find the given number is a prime or not.
- iii) Compute sine and cos series
- iv) Checking a number palindrome
- v) Construct a pyramid of numbers.

UNIT III

WEEK 7:

Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.

Lab 7:1D Array manipulation, linear search

- i) Find the min and max of a 1-D integer array.
- ii) Perform linear search on1D array.
- iii) The reverse of a 1D integer array
- iv) Find 2's complement of the given binary number.
- v) Eliminate duplicate elements in an array.

WEEK 8:

Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings. Explore sorting solution bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2 D arrays, sorting and Strings.

Lab 8: Matrix problems, String operations, Bubble sort

- i) Addition of two matrices
- ii) Multiplication two matrices
- iii) Sort array elements using bubble sort
- iv) Concatenate two strings without built-in functions
- v) Reverse a string using built-in and without built-in string functions

UNIT IV

WEEK9:

Objective: Explore pointers to manage a dynamic array of integers, including memory allocation & amp; value initialization, resizing changing and reordering the contents of an array and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C

Suggested Experiments/Activities:

Tutorial 9: Pointers, structures and dynamic memory allocation

Lab 9: Pointers and structures, memory dereference.

- i) Write a C program to find the sum of a 1D array using malloc()
- ii) Write a C program to find the total, average of n students using structures
- iii) Enter n students data using calloc() and display failed students list
- iv) Read student name and marks from the command line and display the student details along with the total.
- v) Write a C program to implement realloc()

WEEK 10:

Objective: Experiment with C Structures, Unions, bit fields and self-referential structures (Singly linked lists) and nested structures

Suggested Experiments/Activities:

Tutorial 10: Bitfields, Self-Referential Structures, Linked lists

Lab10 : Bitfields, linked lists

Read and print a date using dd/mm/yyyy format using bit-fields and differentiate the same without using bit- fields

- i) Create and display a singly linked list using self-referential structure.
- ii) Demonstrate the differences between structures and unions using a C program.
- iii) Write a C program to shift/rotate using bitfields.
- iv) Write a C program to copy one structure variable to another structure of the same type.

UNIT V

WEEK 11:

Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some experiments by parameter passing using call by value. Basic methods of numerical integration

Suggested Experiments/Activities:

Tutorial 11: Functions, call by value, scope and extent,

Lab 11: Simple functions using call by value, solving differential equations using Eulers theorem.

- i) Write a C function to calculate NCR value.
- ii) Write a C function to find the length of a string.
- iii) Write a C function to transpose of a matrix.
- iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method

WEEK 12:

Objective: Explore how recursive solutions can be programmed by writing recursive functions that can be invoked from the main by programming at-least five distinct problems that have naturally recursive solutions.

Suggested Experiments/Activities:

Tutorial 12: Recursion, the structure of recursive calls

Lab 12: Recursive functions

- i) Write a recursive function to generate Fibonacci series.
- ii) Write a recursive function to find the lcm of two numbers.

- iii) Write a recursive function to find the factorial of a number.
- iv) Write a C Program to implement Ackermann function using recursion.
- v) Write a recursive function to find the sum of series.

WEEK 13:

Objective: Explore the basic difference between normal and pointer variables, Arithmetic operations using pointers and passing variables to functions using pointers

Suggested Experiments/Activities:

Tutorial 13: Call by reference, dangling pointers

Lab 13: Simple functions using Call by reference, Dangling pointers.

- i) Write a C program to swap two numbers using call by reference.
- ii) Demonstrate Dangling pointer problem using a C program.
- iii) Write a C program to copy one string into another using pointer.
- iv) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.

WEEK14:

Objective: To understand data files and file handling with various file I/O functions. Explore the differences between text and binary files.

Suggested Experiments/Activities:

Tutorial 14: File handling

Lab 14: File operations

- i) Write a C program to write and read text into a file.
- ii) Write a C program to write and read text into a binary file using fread() and fwrite()
- iii) Copy the contents of one file to another file.
- iv) Write a C program to merge two files into the third file using command-line arguments.
- v) Find no. of lines, words and characters in a file
- vi) Write a C program to print last n characters of a given file.

Textbooks:

- 1. Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2. Byron Gottfried, Schaum' s Outline of Programming with C, McGraw Hill

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall of India
- 2. C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

I Year B.Tech. CSE– I Semester

L	Т	Р	С
0	0	1	0.5

(23A99201) HEALTH AND WELLNESS, YOGA AND SPORTS (Common to All branches of Engineering)

Course Objectives:

The main objective of introducing this course is to make the students maintain their mental and physical wellness by balancing emotions in their life. It mainly enhances the essential traits required for the development of the personality.

Course Outcomes: After completion of the course the student will be able to

- CO1: Understand the importance of yoga and sports for Physical fitness and sound health.
- **CO2:** Demonstrate an understanding of health-related fitness components.
- **CO3:** Compare and contrast various activities that help enhance their health.

CO4: Assess current personal fitness levels.

CO5: Develop Positive Personality

UNIT I

Concept of health and fitness, Nutrition and Balanced diet, basic concept of immunity Relationship between diet and fitness, Globalization and its impact on health, Body Mass Index (BMI) of all age groups.

Activities:

- i) Organizing health awareness programmes in community
- ii) Preparation of health profile
- iii) Preparation of chart for balance diet for all age groups

UNIT II

Concept of yoga, need for and importance of yoga, origin and history of yoga in Indian context, classification of yoga, Physiological effects of Asanas- Pranayama and meditation, stress management and yoga, Mental health and yoga practice.

Activities:

Yoga practices – Asana, Kriya, Mudra, Bandha, Dhyana, Surya Namaskar

UNIT III

Concept of Sports and fitness, importance, fitness components, history of sports, Ancient and Modern Olympics, Asian games and Commonwealth games.

Activities:

i) Participation in one major game and one individual sport viz., Athletics, Volleyball,

Basketball, Handball, Football, Badminton, Kabaddi, Kho-kho, Table tennis, Cricket etc.

Practicing general and specific warm up, aerobics

ii) Practicing cardio respiratory fitness, treadmill, run test, 9 min walk, skipping and running.

Reference Books:

- 1. Gordon Edlin, Eric Golanty. Health and Wellness, 14th Edn. Jones & Bartlett Learning, 2022
- 2. T.K.V.Desikachar. The Heart of Yoga: Developing a Personal Practice
- 3. Archie J.Bahm. Yoga Sutras of Patanjali, Jain Publishing Company, 1993
- 4. Wiseman, John Lofty, SAS Survival Handbook: The Ultimate Guide to Surviving Anywhere Third Edition, William Morrow Paperbacks, 2014
- 5. The Sports Rules Book/ Human Kinetics with Thomas Hanlon. -- 3rd ed. Human Kinetics, Inc.2014

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities of Health/Sports/Yoga.
- **2.** Institutes must provide field/facility and offer the minimum of five choices of as many as Games/Sports.
- **3.** Institutes are required to provide sports instructor / yoga teacher to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.

A student shall be evaluated by the concerned teacher for 10 marks by conducting viva voce on the subject.

I Year B.Tech. CSE – II Semester

L	Т	Р	С
3	0	0	3

(23A56101) ENGINEERING PHYSICS

(Common for all branches of Engineering)

Course Objectives:

To bridge the gap between the Physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors.

Course Outcomes:

CO1: Analyze the intensity variation of light due to polarization, interference and diffraction.

CO2: Familiarize with the basics of crystals and their structures.

CO3: Explain fundamentals of quantum mechanics and apply it to one dimensional motion of particles.

CO4: Summarize various types of polarization of dielectrics and classify the magnetic materials.

CO5: Explain the basic concepts of Quantum Mechanics and the band theory of solids.

CO6: Identify the type of semiconductor using Hall effect.

UNIT I Wave Optics

Interference: Introduction - Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colours in thin films- Newton's Rings, Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffractions - Fraunhofer diffraction due to single slit, double slit & N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating (Qualitative). Polarization: Introduction -Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

UNIT II Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattices – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods

UNIT III Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - complex dielectric constant – Frequency dependence of polarization – dielectric loss

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability – Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials.

UNIT IV Quantum Mechanics and Free electron Theory

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory – electrical conductivity based on quantum free electron theory - Fermi-Dirac distribution - Density of states - Fermi energy

UNIT V Semiconductors

Semiconductors: Formation of energy bands – classification of crystalline solids - Intrinsic semiconductors: Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors: density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation – Hall effect and its applications.

Textbooks:

- 1. A Text book of Engineering Physics, M. N. Avadhanulu, P.G.Kshirsagar& TVS Arun Murthy, S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics D.K.Bhattacharya and Poonam Tandon, Oxford press (2015)

Reference Books:

- 1. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning 2021.
- 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018.
- 3. Engineering Physics" Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press. 2010
- 4. Engineering Physics M.R. Srinivasan, New Age international publishers (2009).

Web Resources: https://www.loc.gov/rr/scitech/selected-internet/physics.html

I Year B.Tech. CSE- II Semester

L	Т	Р	С
3	0	0	3

(23A54201) DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Common to All Branches of Engineering)

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications.

Course Outcomes: At the end of the course, the student will be able to

CO1: Solve the differential equations related to various engineering fields.

- CO2: Identify solution methods for partial differential equations that model physical processes.
- CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence.
- CO4: Estimate the work done against a field, circulation and flux using vector calculus.

UNIT I Differential equations of first order and first degree

Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay- Electrical circuits.

UNIT II Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentary function, general solution, particular integral, Wronskian, Method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and Simple Harmonic motion.

UNIT III Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.

UNIT IV Vector differentiation

Scalar and vector point functions, vector operator Del, Del applies to scalar point functions-Gradient, Directional derivative, del applied to vector point functions-Divergence and Curl, vector identities.

UNIT V Vector integration

LWithoutegral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.

Textbooks:

- 1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018, 10th Edition.

- 1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- 2. Advanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, Jones and Bartlett, 2018.
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5th Edition.
- 4. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Alpha Science International Ltd., 2021 5th Edition (9th reprint).
- 5. Higher Engineering Mathematics, B. V. Ramana, , McGraw Hill Education, 2017

I Year B.Tech. CSE-II Semester

L	Т	Р	С
3	0	0	3

(23A02101T) BASIC ELECTRICAL & ELECTRONICS ENGINEERING (Common to All branches of Engineering)

Course Objectives

To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field.

Course Outcomes: After the completion of the course students will be able to

Course Outcomes:

CO1: Remember the fundamental laws, operating principles of motors, generators, MC and MI instruments.

CO2: Understand the problem solving concepts associated to AC and DC circuits, construction and operation of AC and DC machines, measuring instruments; different power generation mechanisms, Electricity billing concept and important safety measures related to electrical operations.

CO3: Apply mathematical tools and fundamental concepts to derive various equations related to machines, circuits and measuring instruments; electricity bill calculations and layout representation of electrical power systems.

CO4: Analyze different electrical circuits, performance of machines and measuring instruments.

CO5: Evaluate different circuit configurations, Machine performance and Power systems operation.

PART A: BASIC ELECTRICAL ENGINEERING

UNIT I DC & AC Circuits

DC Circuits: Electrical circuit elements (R, L and C), Ohm's Law and its limitations, KCL & KVL, series, parallel, series-parallel circuits, Super Position theorem, Simple numerical problems.

AC Circuits: A.C. Fundamentals: Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Active power, reactive power and apparent power, Concept of power factor (Simple Numerical problems).

UNIT II Machines and Measuring Instruments

Machines: Construction, principle and operation of (i) DC Motor, (ii) DC Generator, (iii) Single Phase Transformer, (iv) Three Phase Induction Motor and (v) Alternator, Applications of electrical machines.

Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC), Moving Iron (MI) Instruments and Wheat Stone bridge.

UNIT III Energy Resources, Electricity Bill & Safety Measures

Energy Resources: Conventional and non-conventional energy resources; Layout and operation of various Power Generation systems: Hydel, Nuclear, Solar & Wind power generation.

Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Textbooks:

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Reference Books:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill, 2019, Fourth Edition
- 2. Principles of Power Systems, V.K. Mehtha, S.Chand Technical Publishers, 2020
- 3. Basic Electrical Engineering, T. K. Nagsarkar and M. S. Sukhija, Oxford University Press, 2017
- 4. Basic Electrical and Electronics Engineering, S. K. Bhatacharya, Person Publications, 2018, Second Edition.

Web Resources:

- 1. https://nptel.ac.in/courses/108105053
- 2. https://nptel.ac.in/courses/108108076

PART B: BASIC ELECTRONICS ENGINEERING

Course Objectives:

This course provides the student with the fundamental skills to understand the principles of digital electronics, basics of semiconductor devices like diodes & transistors, characteristics and its applications.

Course Outcomes:

CO1: Apply the concept of science and mathematics to understand the working of diodes, transistors, and their applications.

CO2: Explain the characteristics of diodes and transistors.

CO3: Familiarize with the number systems, codes, Boolean algebra and logic gates.

C04: Understand the working mechanism of different combinational, sequential circuits and their role in the digital systems.

UNIT I SEMICONDUCTOR DEVICES

Introduction - Evolution of electronics – Vacuum tubes to nano electronics - Characteristics of PN Junction Diode — Zener Effect — Zener Diode and its Characteristics. Bipolar Junction Transistor — CB, CE, CC Configurations and Characteristics — Elementary Treatment of Small Signal CE Amplifier.

UNIT II BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION

Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

UNIT III DIGITAL ELECTRONICS

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code, Gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple combinational circuits–Half and Full Adder, Introduction to sequential circuits, Flip flops, Registers and counters (Elementary Treatment only)

Textbooks:

- 1. R. L. Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009

Reference Books:

- 1. R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co, 2010.
- 2. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall,

India, 2002.

3. R. T. Paynter, Introductory Electronic Devices & Circuits – Conventional Flow Version, Pearson Education, 2009.

I Year B.Tech. CSE-II Semester

L	Т	Р	С
1	0	4	3

(23A03101T) ENGINEERING GRAPHICS

(Common to All branches of Engineering)

Course Objectives:

- To enable the students with various concepts like dimensioning, conventions and standards related to Engineering Drawing
- To impart knowledge on the projection of points, lines and plane surfaces
- To improve the visualization skills for better understanding of projection of solids
- To develop the imaginative skills of the students required to understand Section of solids and Developments of surfaces.
- To make the students understand the viewing perception of a solid object in Isometric and Perspective projections.

Course Outcomes:

CO1: Understand the principles of engineering drawing, including engineering curves, scales, orthographic and isometric projections.

CO2: Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views.

CO3: Understand and draw projection of solids in various positions in first quadrant.

CO4: Explain principles behind development of surfaces.

CO5: Prepare isometric and perspective sections of simple solids.

UNIT I

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions and Constructing regular polygons by general methods.

Curves: construction of ellipse, parabola and hyperbola by general, Cycloids, Involutes, Normal and tangent to Curves.

Scales: Plain scales, diagonal scales and vernier scales.

UNIT II

Orthographic Projections: Reference plane, importance of reference lines or Plane, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane. Projections of Straight Line Inclined to both the reference planes
Projections of Planes: regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes.

UNIT III

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to anotherplane.

UNIT IV

Sections of Solids: Perpendicular and inclined section planes, Sectional views and True shape of section, Sections of solids in simple position only.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

UNIT V

Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer graphics: Creating 2D&3D drawings of objects including PCB and Transformations using Auto CAD (*Not for end examination*).

Textbook:

1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 2016.

Reference Books:

- 1. Engineering Drawing, K.L. Narayana and P. Kannaiah, Tata McGraw Hill, 2013.
- 2. Engineering Drawing, M.B.Shah and B.C. Rana, Pearson Education Inc,2009.
- 3. Engineering Drawing with an Introduction to AutoCAD, Dhananjay Jolhe, Tata McGraw Hill, 2017.

L	Т	Р	С
0	0	2	1

(2305102) IT WORKSHOP

(Common to all branches of Engineering)

Course Objectives:

- To introduce the internal parts of a computer, peripherals, I/O ports, connecting cables
- To demonstrate configuring the system as Dual boot both Windows and other Operating Systems Viz. Linux, BOSS
- To teach basic command line interface commands on Linux.
- To teach the usage of Internet for productivity and self-paced life-long learning
- To introduce Compression, Multimedia and Antivirus tools and Office Tools such as Word processors, Spread sheets and Presentation tools.

Course Outcomes:

CO1: Perform Hardware troubleshooting.

- CO2: Understand Hardware components and inter dependencies.
- CO3: Safeguard computer systems from viruses/worms.
- CO4: Document/ Presentation preparation.
- CO5: Perform calculations using spreadsheets.

PC Hardware & Software Installation

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot (VMWare) with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Every student should install BOSS on the computer. The system should be configured as dual boot (VMWare) with both Windows and BOSS. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting.

Finally students should demonstrate, to the instructor, how to access the websites and email. If there isno internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of La TeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of La TeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using La TeXand word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using La TeX and Word to create a project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both La TeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

EXCEL

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function,

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

POWER POINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

AI TOOLS – ChatGPT

Task 1: Prompt Engineering: Experiment with different types of prompts to see how the model responds. Try asking questions, starting conversations, or even providing incomplete sentences to see how the model completes them.

• Ex: Prompt: "You are a knowledgeable AI. Please answer the following question: What is the capital of France?"

Task 2: Creative Writing: Use the model as a writing assistant. Provide the beginning of a story or a description of a scene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas

• Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards. Write a story about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence in one language and asking the model to translate it into another language. Compare the output to see how accurate and fluent the translations are.

• Ex: Prompt: "Translate the following English sentence to French: 'Hello, how are you doing today?'"

Reference Books:

- 1. Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dream tech, 2003
- 2. The Complete Computer upgrade and repair book, Cheryl A Schmidt, WILEY Dream tech, 2013, 3rd edition
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education, 2012, 2nd edition
- 4. PC Hardware A Handbook, Kate J. Chase, PHI (Microsoft)
- 5. LaTeX Companion, Leslie Lamport, PHI/Pearson.
- 6. IT Essentials PC Hardware and Software Companion Guide, David Anfins on and Ken Quamme. CISCO Press, Pearson Education, 3rd edition
- 7. IT Essentials PC Hardware and Software Labs and Study Guide, Patrick Regan– CISCO Press, Pearson Education, 3rd edition

L	Т	Р	С
3	0	0	3

(23A05201T) DATA STRUCTURES

(Common to CSE, IT & allied branches)

Course Objectives:

- To provide the knowledge of basic data structures and their implementations.
- To understand importance of data structures in context of writing efficient programs.
- To develop skills to apply appropriate data structures in problem solving.

Course Outcomes: At the end of the course, Student will be able to

CO1: Explain the role of linear data structures in organizing and accessing data efficiently in algorithms.

CO2: Design, implement, and apply linked lists for dynamic data storage, demonstrating understanding of memory allocation.

CO3: Develop programs using stacks to handle recursive algorithms, manage program states, and solve related problems.

CO4: Apply queue-based algorithms for efficient task scheduling and breadth-first traversal in graphs and distinguish between deques and priority queues, and apply them appropriately to solve data management challenges.

CO5: Devise novel solutions to small scale programming challenges involving data structures such as stacks, queues, Trees.

CO6: Recognize scenarios where hashing is advantageous, and design hash-based solutions for specific problems.

UNIT I

Introduction to Linear Data Structures: Definition and importance of linear data structures, Abstract data types (ADTs) and their implementation, Overview of time and space complexity analysis for linear data structures. Searching Techniques: Linear & Binary Search, Sorting Techniques: Bubble sort, Selection sort, Insertion Sort

UNIT II

Linked Lists: Singly linked lists: representation and operations, doubly linked lists and circular linked lists, Comparing arrays and linked lists, Applications of linked lists.

UNIT III

Stacks: Introduction to stacks: properties and operations, implementing stacks using arrays and linked lists, Applications of stacks in expression evaluation, backtracking, reversing list etc.

UNIT IV

Queues: Introduction to queues: properties and operations, implementing queues using arrays and linked lists, Applications of queues in breadth-first search, scheduling, etc.

Deques: Introduction to deques (double-ended queues), Operations on deques and their applications.

UNIT V

Trees: Introduction to Trees, Binary Search Tree - Insertion, Deletion & Traversal

Hashing: Brief introduction to hashing and hash functions, Collision resolution techniques: chaining and open addressing, Hash tables: basic implementation and operations, Applications of hashing in unique identifier generation, caching, etc.

Textbooks:

- 1. Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- 2. Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Silicon Press, 2008

Reference Books:

- 1. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 2. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 3. Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
- 4. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- 5. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick

I Year B.Tech. CSE–II Semester

L	Т	Р	С
0	0	2	1

(23A56101P) ENGINEERING PHYSICS LAB (Common to All Branches of Engineering)

Course Objectives:

To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments.

Course Outcomes: The students will be able to

CO1: Operate optical instruments like travelling microscope and spectrometer.

CO2: Estimate the wavelengths of different colours using diffraction grating.

CO3: Plot the intensity of the magnetic field of circular coil carrying current with distance.

CO4: Evaluate dielectric constant and magnetic susceptibility for dielectric and magnetic materials respectively.

CO5: Calculate the band gap of a given semiconductor.

CO6: Identify the type of semiconductor using Hall effect.

List of Experiments:

- 1. Determination of radius of curvature of a given Plano-convex lens by Newton's rings.
- 2. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 3. Verification of Brewster's law
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Determination of wavelength of Laser light using diffraction grating.
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Determination of the resistivity of semiconductors by four probe methods.
- 9. Determination of energy gap of a semiconductor using p-n junction diode.
- 10. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method.
- 11. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect.
- 12. Determination of temperature coefficients of a thermistor.
- 13. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum.
- 14. Determination of magnetic susceptibility by Kundt's tube method.
- 15. Determination of rigidity modulus of the material of the given wire using Torsional pendulum.
- 16. Sonometer: Verification of laws of stretched string.
- 17. Determination of young's modulus for the given material of wooden scale by nonuniform bending (or double cantilever) method.

- 18. Determination of Frequency of electrically maintained tuning fork by Melde's experiment.
- **Note:** Any TEN of the listed experiments are to be conducted. Out of which any TWO experiments may be conducted in virtual mode.

References:

• A Textbook of Practical Physics - S. Balasubramanian, M.N. Srinivasan, S. Chand Publishers, 2017.

Web Resources

- <u>www.vlab.co.in</u>
- <u>https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype</u>

L	Т	Р	С
0	0	3	1.5

(23A02101P) ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP

(Common to All branches of Engineering)

Course Objectives:

To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations.

Course Outcomes:

CO1: Understand the Electrical circuit design concept; measurement of resistance, power, power factor; concept of wiring and operation of Electrical Machines and Transformer.

CO2: Apply the theoretical concepts and operating principles to derive mathematical models for circuits, Electrical machines and measuring instruments; calculations for the measurement of resistance, power and power factor.

CO3: Apply the theoretical concepts to obtain calculations for the measurement of resistance, power and power factor.

CO4: Analyse various characteristics of electrical circuits, electrical machines and measuring instruments.

CO5: Design suitable circuits and methodologies for the measurement of various electrical parameters; Household and commercial wiring.

Activities:

- 1. Familiarization of commonly used Electrical & Electronic Workshop Tools: Bread board, Solder, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, flux, knife/blade, soldering iron, de-soldering pump etc.
 - Provide some exercises so that hardware tools and instruments are learned to be used by the students.
- 2. Familiarization of Measuring Instruments like Voltmeters, Ammeters, multimeter, LCR-Q meter, Power Supplies, CRO, DSO, Function Generator, Frequency counter.
 - Provide some exercises so that measuring instruments are learned to be used by the students.
- 3. Components:
 - Familiarization/Identification of components (Resistors, Capacitors, Inductors, Diodes, transistors, IC's etc.) Functionality, type, size, colour coding package, symbol, cost etc.
 - Testing of components like Resistor, Capacitor, Diode, Transistor, ICs etc. -Compare values of components like resistors, inductors, capacitors etc with the measured values by using instruments

PART A: ELECTRICAL ENGINEERING LAB

List of experiments:

1. Verification of KCL and KVL

- 2. Verification of Superposition theorem
- 3. Measurement of Resistance using Wheat stone bridge
- 4. Magnetization Characteristics of DC shunt Generator
- 5. Measurement of Power and Power factor using Single-phase wattmeter
- 6. Measurement of Earth Resistance using Megger
- 7. Calculation of Electrical Energy for Domestic Premises

Reference Books:

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Note: Minimum Six Experiments to be performed.

PART B: ELECTRONICS ENGINEERING LAB

Course Objectives:

• To impart knowledge on the principles of digital electronics and fundamentals of electron devices & its applications.

Course Outcomes: At the end of the course, the student will be able to

CO1: Identify & testing of various electronic components.

CO2: Understand the usage of electronic measuring instruments.

CO3: Plot and discuss the characteristics of various electron devices.

CO4: Explain the operation of a digital circuit.

List of Experiments:

- 1. Plot V-I characteristics of PN Junction diode A) Forward bias B) Reverse bias.
- 2. Plot V I characteristics of Zener Diode and its application as voltage Regulator.
- 3. Implementation of half wave and full wave rectifiers
- 4. Plot Input & Output characteristics of BJT in CE and CB configurations
- 5. Frequency response of CE amplifier.
- 6. Simulation of RC coupled amplifier with the design supplied
- 7. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 8. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

References:

- 1. R. L. Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Note: Minimum Six Experiments to be performed.All the experiments shall be implemented using both Hardware and Software.

L	Т	Р	C
0	0	3	1.5

(23A05201P) DATA STRUCTURES LAB

(Common to CSE, IT & allied branches)

Course Objectives:

The course aims to strengthen the ability of the students to identify and apply the suitable data structure for the given real-world problem. It enables them to gain knowledge in practical applications of data structures.

Course Outcomes: At the end of the course, Student will be able to

CO1: Explain the role of linear data structures in organizing and accessing data efficiently in algorithms.

CO2: Design, implement, and apply linked lists for dynamic data storage, demonstrating understanding of memory allocation.

CO3: Develop programs using stacks to handle recursive algorithms, manage program states, and solve related problems.

CO4: Apply queue-based algorithms for efficient task scheduling and breadth-first traversal in graphs and distinguish between deques and priority queues and apply them appropriately to solve data management challenges.

CO5: Recognize scenarios where hashing is advantageous, and design hash-based solutions for specific problems.

List of Experiments:

Exercise 1: Array Manipulation

- i) Write a program to reverse an array.
- ii) C Programs to implement the Searching Techniques Linear & Binary Search
- iii) C Programs to implement Sorting Techniques Bubble, Selection and Insertion Sort

Exercise 2: Linked List Implementation

- i) Implement a singly linked list and perform insertion and deletion operations.
- ii) Develop a program to reverse a linked list iteratively and recursively.
- iii) Solve problems involving linked list traversal and manipulation.

Exercise 3: Linked List Applications

- i) Create a program to detect and remove duplicates from a linked list.
- ii) Implement a linked list to represent polynomials and perform addition.
- iii) Implement a double-ended queue (deque) with essential operations.

Exercise 4: Double Linked List Implementation

- i) Implement a doubly linked list and perform various operations to understand its properties and applications.
- ii) Implement a circular linked list and perform insertion, deletion, and traversal.

Exercise 5: Stack Operations

- i) Implement a stack using arrays and linked lists.
- ii) Write a program to evaluate a postfix expression using a stack.
- iii) Implement a program to check for balanced parentheses using a stack.

Exercise 6: Queue Operations

- i) Implement a queue using arrays and linked lists.
- ii) Develop a program to simulate a simple printer queue system.
- iii) Solve problems involving circular queues.

Exercise 7: Stack and Queue Applications

- i) Use a stack to evaluate an infix expression and convert it to postfix.
- ii) Create a program to determine whether a given string is a palindrome or not.
- iii) Implement a stack or queue to perform comparison and check for symmetry.

Exercise8: Binary Search Tree

- i) Implementing a BST using Linked List.
- ii) Traversing of BST.

Exercise 9: Hashing

- i) Implement a hash table with collision resolution techniques.
- ii) Write a program to implement a simple cache using hashing.

Textbooks:

- 1. Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- 2. Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Silicon Press, 2008

Reference Books:

- 1. Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- 2. C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- 3. Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
- 4. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- 5. Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms by Robert Sedgewick.

L	Т	Р	С
0	0	1	0.5

(23A99101) NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE (Common to All branches of Engineering)

Course Objectives:

The objective of introducing this course is to impart discipline, character, fraternity, teamwork, social consciousness among the students and engaging them in selfless service.

Course Outcomes: After completion of the course the students will be able to

CO1: Understand the importance of discipline, character and service motto.

CO2: Solve some societal issues by applying acquired knowledge, facts, and techniques.

CO3: Explore human relationships by analyzing social problems.

CO4: Determine to extend their help for the fellow beings and downtrodden people.

CO5: Develop leadership skills and civic responsibilities.

UNIT I Orientation

General Orientation on NSS/NCC/ Scouts & Guides/Community Service activities, career guidance.

Activities:

- i) Conducting –ice breaking sessions-expectations from the course-knowing personal talents and skills
- ii) Conducting orientations programs for the students –future plans-activities-releasing road map etc.
- iii) Displaying success stories-motivational biopics- award winning movies on societal issues etc.
- iv) Conducting talent show in singing patriotic songs-paintings- any other contribution.

UNIT II Nature & Care

Activities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organising Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.
- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT III Community Service Activities:

- i) Conducting One Day Special Camp in a village contacting village-area leaders-Survey in the village, identification of problems- helping them to solve via mediaauthorities-experts-etc.
- ii) Conducting awareness programs on Health-related issues such as General Health, Mental health, Spiritual Health, HIV/AIDS,
- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes- Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.

Reference Books:

- 1. Nirmalya Kumar Sinha & Surajit Majumder, A Text Book of National Service SchemeVol; I, Vidya Kutir Publication, 2021 (ISBN 978-81-952368-8-6)
- 2. *Red Book National Cadet Corps –* Standing Instructions Vol I & II, Directorate General of NCC, Ministry of Defence, New Delhi
- 3. Davis M. L. and Cornwell D. A., "Introduction to Environmental Engineering", McGraw Hill, New York 4/e 2008
- 4. Masters G. M., Joseph K. and Nagendran R. "Introduction to Environmental Engineering and Science", Pearson Education, New Delhi. 2/e 2007
- 5. Ram Ahuja. Social Problems in India, Rawat Publications, New Delhi.

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities.
- 2. Institutes are required to provide instructor to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting viva voce on the subject.

L	Т	P	С
3	0	0	3

(23A54301) DISCRETE MATHEMATICS & GRAPH THEORY (Common to CSE and all CSE allied branches)

Course Outcomes: After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Apply mathematical logic to solve problems.	L2, L3
CO2	Understand the concepts and perform the operations related to sets, relations and functions. Gain the conceptual background needed and identify structures of algebraic nature.	L3, L5
CO3	Apply basic counting techniques to solve combinatorial problems.	L3
CO4	Formulate problems and solve recurrence relations.	L2, L3
CO5	Apply Graph Theory in solving computer science problems	L3, L5

UNIT I Mathematical Logic

Introduction, Statements and Notation, Connectives, Well-formed formulas, Tautology, Duality law, Equivalence, Implication, Normal Forms, Functionally complete set of connectives, Inference Theory of Statement Calculus, Predicate Calculus, Inference theory of Predicate Calculus.

UNIT II Set theory

The Principle of Inclusion- Exclusion, Pigeon hole principle and its application, Functions composition of functions, Inverse Functions, Recursive Functions, Lattices and its properties. Algebraic structures: Algebraic systems-Examples and General Properties, Semi groups and Monoids, groups, sub groups, homomorphism, Isomorphism.

UNIT III Elementary Combinatorics

Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutations with Constrained Repetitions, Binomial Coefficients, The Binomial and Multinomial Theorems.

UNITIV: Recurrence Relations

Generating Functions of Sequences, Calculating Coefficients of Generating Functions, Recurrence relations, Solving Recurrence Relations by Substitution and Generating functions, The Method of Characteristic roots, Solutions of Inhomogeneous, Recurrence Relations.

UNIT V Graphs

Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs.

Textbooks:

1. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

2. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.

Reference Books:

- 6. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition, Pearson Education.
- 7. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science.

Online Learning Resources:

1. http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

L	Т	Р	С
2	1	0	3

(23A52301) UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT (Common to All Branches of Engineering)

Course Objectives:

- To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards valuebased living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

COU	RSE OUTCOMES: At the end of the course, students will be able to	Blooms Level
CO1	Define the terms like Natural Acceptance, Happiness and Prosperity	L1, L2
CO2	Identify one's self, and one's surroundings (family, society nature)	L1, L2
CO3	Apply what they have learnt to their own self in different day-to-day settings in real life	L3
CO4	Relate human values with human relationship and human society.	L4
CO5	Justify the need for universal human values and harmonious existence	L5
CO6	Develop as socially and ecologically responsible engineers	L3, L6

Course Topics

The course has 28 lectures and 14 tutorials in 5 modules. The lectures and tutorials are of 1-hour duration. Tutorial sessions are to be used to explore and practice what has been proposed during the lecture sessions.

The Teacher's Manual provides the outline for lectures as well as practice sessions. The teacher is expected to present the issues to be discussed as propositions and encourage the students to have a dialogue.

 UNIT I Introduction to Value Education (6 lectures and 3 tutorials for practice session) Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education) Lecture 2: Understanding Value Education Tutorial 1: Practice Session PS1 Sharing about Oneself Lecture 3: self-exploration as the Process for Value Education Lecture4: Continuous Happiness and Prosperity – the Basic Human Aspirations

	Tutorial 2: Practice Session PS2 Exploring Human Consciousness Lecture 5: Happiness and Prosperity – Current Scenario Lecture 6: Method to Fulfill the Basic Human Aspirations Tutorial 3: Practice Session PS3 Exploring Natural Acceptance
UNIT II	Harmony in the Human Being (6 lectures and 3 tutorials for practice session)Lecture 7: Understanding Human being as the Co-existence of the self and the body.Lecture 8: Distinguishing between the Needs of the self and the bodyTutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.Lecture 9: The body as an Instrument of the self
	Lecture 10: Understanding Harmony in the self Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self Lecture 11: Harmony of the self with the body Lecture 12: Programme to ensure self-regulation and Health Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body
UNIT III	 Harmony in the Family and Society (6 lectures and 3 tutorials for practice session) Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction Lecture 14: 'Trust' – the Foundational Value in Relationship Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust Lecture 15: 'Respect' – as the Right Evaluation Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect Lecture 16: Other Feelings, Justice in Human-to-Human Relationship Lecture 17: Understanding Harmony in the Society Lecture 18: Vision for the Universal Human Order Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human Goal
UNIT IV session)	 Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice Lecture 19: Understanding Harmony in the Nature Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature Lecture 21: Realizing Existence as Co-existence at All Levels Lecture 22: The Holistic Perception of Harmony in Existence Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence
UNIT V	 Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session) Lecture 23: Natural Acceptance of Human Values Lecture 24: Definitiveness of (Ethical) Human Conduct Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Lecture 26: Competence in Professional Ethics Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies Lecture 28: Strategies for Transition towards Value-based Life and Profession Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order

Practice Sessions for UNIT I – Introduction to Value Education PS1 Sharing about Oneself PS2 Exploring Human Consciousness PS3 Exploring Natural Acceptance

Practice Sessions for UNIT II – Harmony in the Human Being PS4 Exploring the difference of Needs of self and body PS5 Exploring Sources of Imagination in the self PS6 Exploring Harmony of self with the body

Practice Sessions for UNIT III – Harmony in the Family and Society PS7 Exploring the Feeling of Trust PS8 Exploring the Feeling of Respect PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for UNIT IV – Harmony in the Nature (Existence) PS10 Exploring the Four Orders of Nature PS11 Exploring Co-existence in Existence

Practice Sessions for UNIT V – Implications of the Holistic Understanding – a Look at Professional Ethics PS12 Exploring Ethical Human Conduct PS13 Exploring Humanistic Models in Education PS14 Exploring Steps of Transition towards Universal Human Order

READINGS:

Textbook and Teachers Manual

a. The Textbook

R R Gaur, R Asthana, G P Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1 b. The Teacher's Manual

R R Gaur, R Asthana, G P Bagaria, *Teachers' Manual for A Foundation Course in Human Values and Professional Ethics,* 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. *The Story of Stuff* (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal

9. Rediscovering India - by Dharampal

- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. *Gandhi* Romain Rolland (English)

Mode of Conduct:

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, not exclusively by any one department.

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

Online Resources

1. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-</u> Introduction%20to%20Value%20Education.pdf

2. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-</u> <u>Harmony%20in%20the%20Human%20Being.pdf</u>

3. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-</u> <u>Harmony%20in%20the%20Family.pdf</u>

4. <u>https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-</u> S2%20Respect%20July%2023.pdf 5. https://fdp-si.aicte-india.org/UHV-

II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-Harmony%20in%20the%20Nature%20and%20Existence.pdf

6. <u>https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%203D%20D3-S2A%20Und%20Nature-Existence.pdf</u>

7. <u>https://fdp-si.aicte-</u> india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture%2023-25%20Ethics%20v1.pdf

8. <u>https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385</u>

https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

L	Т	Р	С
3	0	0	3
3	0	0	3

(23A30402) DIGITAL LOGIC & COMPUTER ORGANIZATION

Course Objectives: The main objective of the course is to

- provide students with a comprehensive understanding of digital logic design principles and computer organization fundamentals
- Describe memory hierarchy concepts
- Explain input/output (I/O) systems and their interaction with the CPU, memory, and peripheral devices

Course Outcomes: After completion of the course, students will be able to

- Differentiate between combinational and sequential circuits based on their characteristics and functionalities. (L2)
- Demonstrate an understanding of computer functional units. (L2)
- Analyze the design and operation of processors, including instruction execution, pipelining, and control unit mechanisms, to comprehend their role in computer systems.(L3)
- Describe memory hierarchy concepts, including cache memory, virtual memory, and secondary storage, and evaluate their impact on system performance and scalability. (L3)
- Explain input/output (I/O) systems and their interaction with the CPU, memory, and peripheral devices, including interrupts, DMA, and I/O mapping techniques. (L3)
- Design Sequential and Combinational Circuits (L6)

UNIT – I:

Data Representation: Binary Numbers, Fixed Point Representation. Floating Point Representation. Number base conversions, Octal and Hexadecimal Numbers, components, Signed binary numbers, Binary codes

Digital Logic Circuits-I: Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. K-Map Simplification, Combinational Circuits, Decoders, Multiplexers

UNIT – II:

Digital Logic Circuits-II: Sequential Circuits, Flip-Flops, Binary counters, Registers, Shift Registers, Ripple counters

Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers, Computer Generations, Von- Neumann Architecture

UNIT – III:

Computer Arithmetic : Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed-operand Multiplication, Fast Multiplication, Integer Division, Floating-Point Numbers and Operations

Processor Organization: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization, Hardwired Control and Multi programmed Control

UNIT – IV:

The Memory Organization: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage

UNIT – V:

Input /Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces

Textbooks:

- 1. Computer Organization, Carl Hamacher, ZvonkoVranesic, SafwatZaky, 6th edition, McGraw Hill, 2023.
- 2. Digital Design, 6th Edition, M. Morris Mano, Pearson Education, 2018.
- 3. Computer Organization and Architecture, William Stallings, 11thEdition, Pearson, 2022.

Reference Books:

- 1. Computer Systems Architecture, M.Moris Mano, 3rdEdition, Pearson, 2017.
- 2. Computer Organization and Design, David A. Paterson, John L. Hennessy, Elsevier, 2004.
- 3. Fundamentals of Logic Design, Roth, 5thEdition, Thomson, 2003.

Online Learning Resources:

https://nptel.ac.in/courses/106/103/106103068/

L	Т	Р	С
3	0	0	3

(23A05302T) ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS

Course Objectives: The main objective of the course is to

- provide knowledge on advance data structures frequently used in Computer Science domain
- Develop skills in algorithm design techniques popularly used
- Understand the use of various data structures in the algorithm design

Course Outcomes: After completion of the course, students will be able to

- Illustrate the working of the advanced tree data structures and their applications (L2)
- Understand the Graph data structure, traversals and apply them in various contexts. (L2)
- Use various data structures in the design of algorithms (L3)
- Recommend appropriate data structures based on the problem being solved (L5)
- Analyze algorithms with respect to space and time complexities (L4)
- Design new algorithms (L6)

UNIT – I:

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations.

AVL Trees – Creation, Insertion, Deletion operations and Applications

B-Trees - Creation, Insertion, Deletion operations and Applications

UNIT – II:

Heap Trees (Priority Queues) – Min and Max Heaps, Operations and Applications

Graphs – Terminology, Representations, Basic Search and Traversals, Connected Components and Biconnected Components, applications

Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, Convex Hull

UNIT – III:

Greedy Method: General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths

Dynamic Programming: General Method, All pairs shortest paths, Single Source Shortest Paths – General Weights (Bellman Ford Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String Editing, Travelling Salesperson problem

UNIT – IV:

Backtracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem

Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Salesperson problem

UNIT – V:

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem

NP Hard Graph Problems: Clique Decision Problem (CDP), Chromatic Number Decision Problem (CNDP), Traveling Salesperson Decision Problem (TSP)

NP Hard Scheduling Problems: Scheduling Identical Processors, Job Shop Scheduling

Textbooks:

- 1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh 2nd Edition Universities Press
- 2. Computer Algorithms/C++ Ellis Horowitz, SartajSahni, SanguthevarRajasekaran2nd Edition University Press

Reference Books:

- 1. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
- 2. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill
- 3. The Art of Computer Programming, Vol.1: Fundamental Algorithms, Donald E Knuth, Addison-Wesley, 1997.
- 4. Data Structures using C & C++: Langsam, Augenstein&Tanenbaum, Pearson, 1995
- 5. Algorithms + Data Structures & Programs:, N. Wirth, PHI
- 6. Fundamentals of Data Structures in C++: Horowitz Sahni& Mehta, Galgottia Pub.
- 7. Data structures in Java:, Thomas Standish, Pearson Education Asia

Online Learning Resources:

- 1. https://www.tutorialspoint.com/advanced_data_structures/index.asp
- 2. http://peterindia.net/Algorithms.html
- 3. Abdul Bari, 1. Introduction to Algorithms (youtube.com)

L	Т	Р	С
3	0	0	3

(23A05303T) OBJECT-ORIENTED PROGRAMMING THROUGH JAVA

Course Objectives: The learning objectives of this course are to:

- Identify Java language components and how they work together in applications
- Learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- Learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications
- Understand how to design applications with threads in Java
- Understand how to use Java apisfor program development

Course Outcomes: After completion of the course, students will be able to

- Analyze problems, design solutions using OOP principles, and implement them efficiently in Java. (L4)
- Design and implement classes to model real-world entities, with a focus on attributes, behaviors, and relationships between objects (L4)
- Demonstrate an understanding of inheritance hierarchies and polymorphic behaviour, including method overriding and dynamic method dispatch. (L3)
- Apply Competence in handling exceptions and errors to write robust and fault-tolerant code. (L3)
- Perform file input/output operations, including reading from and writing to files using Java I/O classes, graphical user interface (GUI) programming using JavaFX. (L3)
- Choose appropriate data structure of Java to solve a problem (L6)

UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with printf() Method, Static Variables and Methods, Attribute Final, **Introduction to Operators**, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if–else Expressions, Ternary Operator?:, Switch Statement, Iteration Statements, while Expression, do–while Loop, for Loop, Nested for Loop, For–Each for Loop, Break Statement, Continue Statement.

UNIT II: Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.

UNIT III: Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class-Object Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional Interfaces, Annotations.

UNIT IV: Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes, Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto-unboxing, Java util Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant (java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions.

Java I/O and File: Java I/O API, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java(Text Book 2)

UNIT V: String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings, Comparison, Modifying, Searching; Class String Buffer.

Multithreaded Programming: Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, Thread Class, Main Thread-Creation of New Threads, Thread States, Thread Priority-Synchronization, Deadlock and Race Situations, Inter-thread Communication - Suspending, Resuming, and Stopping of Threads.

Java Database Connectivity: Introduction, JDBC Architecture, Installing MySQL and MySQL Connector/J, JDBC Environment Setup, Establishing JDBC Database Connections, ResultSet Interface

Java FX GUI: Java FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes in scene graph, mouse events (Text Book 3)

Text Books:

- 1. JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.
- 2. Joy with JAVA, Fundamentals of Object Oriented Programming, DebasisSamanta, MonalisaSarma, Cambridge, 2023.
- 3. JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th Edition, Pearson.

References Books:

- 1. The complete Reference Java, 11thedition, Herbert Schildt, TMH
- 2. Introduction to Java programming, 7th Edition, Y Daniel Liang, Pearson

Online Resources:

- 1. https://nptel.ac.in/courses/106/105/106105191/
- 2. <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012880464547618816347</u> <u>shared/overview</u>

L	Т	Р	С
0	0	3	1.5

(23A05302P) ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS LAB

Course Objectives: The objective of the course is to

- acquire practical skills in constructing and managing Data structures
- apply the popular algorithm design methods in problem-solving scenarios

Course Outcomes: After completion of the course, students will be able to

- Design and develop programs to solve real world problems with the popular algorithm design methods. (L5)
- Demonstrate an understanding of Non-Linear data structures by developing implementing the operations on AVL Trees, B-Trees, Heaps and Graphs. (L2)
- Critically assess the design choices and implementation strategies of algorithms and data structures in complex applications. (L5)
- Utilize appropriate data structures and algorithms to optimize solutions for specific computational problems. (L3)
- Compare the performance of different of algorithm design strategies (L4)
- Design algorithms to new real world problems (L6)

Experiments covering the Topics:

- Operations on AVL trees, B-Trees, Heap Trees
- Graph Traversals
- Sorting techniques
- Minimum cost spanning trees
- Shortest path algorithms
- 0/1 Knapsack Problem
- Travelling Salesperson problem
- Optimal Binary Search Trees
- N-Queens Problem
- Job Sequencing

Sample Programs:

- 1. Construct an AVL tree for a given set of elements which are stored in a file. And implement insert and delete operation on the constructed tree. Write contents of tree into a new file using in-order.
- 2. Construct B-Tree an order of 5 with a set of 100 random elements stored in array. Implement searching, insertion and deletion operations.
- 3. Construct Min and Max Heap using arrays, delete any element and display the content of the Heap.
- 4. Implement BFT and DFT for given graph, when graph is represented bya) Adjacency Matrixb) Adjacency Lists
- 5. Write a program for finding the bi-connected components in a given graph.
- 6. Implement Quick sort and Merge sort and observe the execution time for various input sizes (Average, Worst and Best cases).
- 7. Compare the performance of Single Source Shortest Paths using Greedy method when the graph is represented by adjacency matrix and adjacency lists.

- 8. Implement Job sequencing with deadlines using Greedy strategy.
- 9. Write a program to solve 0/1 Knapsack problem Using Dynamic Programming.
- 10. Implement N-Queens Problem Using Backtracking.
- 11. Use Backtracking strategy to solve 0/1 Knapsack problem.
- 12. Implement Travelling Sales Person problem using Branch and Bound approach.

Reference Books:

- 1. Fundamentals of Data Structures in C++, Horowitz Ellis, SahniSartaj, Mehta, Dinesh, 2ndEdition, Universities Press
- 2. Computer Algorithms/C++ Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, 2ndEdition, University Press
- 3. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
- 4. An introduction to Data Structures with applications, Trembley& Sorenson, McGraw Hill

Online Learning Resources:

- 1. http://cse01-iiith.vlabs.ac.in/
- 2. http://peterindia.net/Algorithms.html

L	Т	Р	С
0	0	3	1.5

(23A05303P) OBJECT-ORIENTED PROGRAMMING THROUGH JAVA LAB

Course Objectives: The aim of this course is to

- Practice object-oriented programming in the Java programming language
- Implement Classes, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism
- Illustrate inheritance, Exception handling mechanism, JDBC connectivity
- Construct Threads, Event Handling, implement packages, Java FX GUI

Course Outcomes: After completion of the course, students will be able to

- Demonstrate a solid understanding of Java syntax, including data types, control structures, methods, classes, objects, inheritance, polymorphism, and exception handling. (L2)
- Apply fundamental OOP principles such as encapsulation, inheritance, polymorphism, and abstraction to solve programming problems effectively. (L3)
- Familiar with commonly used Java libraries and APIs, including the Collections Framework, Java I/O, JDBC, and other utility classes. (L2)
- Develop problem-solving skills and algorithmic thinking, applying OOP concepts to design efficient solutions to various programming challenges. (L3)
- Proficiently construct graphical user interface (GUI) applications using JavaFX (L4)
- Develop new programs for solving typical computer science problems (L6)

Experiments covering the Topics:

- Object Oriented Programming fundamentals- data types, control structures
- Classes, methods, objects, Inheritance, polymorphism,
- Exception handling, Threads, Packages, Interfaces
- Files, I/O streams, JavaFX GUI

Sample Experiments:

Exercise – 1:

a) Write a JAVA program to display default value of all primitive data type of JAVA

b) Write a java program that display the roots of a quadratic equation $ax^2+bx=0$. Calculate the discriminate D and basing on value of D, describe the nature of root.

Exercise - 2

a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism.

b) Write a JAVA program to sort for an element in a given list of elements using bubble sort

c) Write a JAVA program using StringBuffer to delete, remove character.

Exercise - 3

a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method.

- b) Write a JAVA program implement method overloading.
- c) Write a JAVA program to implement constructor.
- d) Write a JAVA program to implement constructor overloading.

Exercise - 4

- a) Write a JAVA program to implement Single Inheritance
- b) Write a JAVA program to implement multi level Inheritance
- c) Write a JAVA program for abstract class to find areas of different shapes

Exercise - 5

- a) Write a JAVA program give example for "super" keyword.
- b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?
- c) Write a JAVA program that implements Runtime polymorphism

Exercise - 6

- a) Write a JAVA program that describes exception handling mechanism
- b) Write a JAVA program Illustrating Multiple catch clauses
- Write a JAVA program for creation of Java Built-in Exceptions
- Write a JAVA program for creation of User Defined Exception

Exercise - 7

a) Write a JAVA program that creates threads by extending Thread class. First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds, (Repeat the same by implementing Runnable)

- b) Write a program illustrating is Alive and join ()
- c) Write a Program illustrating Daemon Threads.
- d) Write a JAVA program Producer Consumer Problem

Exercise – 8

- 8. Write a JAVA program that import and use the user defined packages
- **9.** Without writing any code, build a GUI that display text in label and image in an ImageView (use JavaFX)
- **10.** Build a Tip Calculator app using several JavaFX components and learn how to respond to user interactions with the GUI

Exercise – 9

a) Write a java program that connects to a database using JDBC

- **b**)Write a java program to connect to a database using JDBC and insert values into it.
- c) Write a java program to connect to a database using JDBC and delete values from it

Textbooks:

- 1. JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.
- 2. Joy with JAVA, Fundamentals of Object Oriented Programming, DebasisSamanta, MonalisaSarma, Cambridge, 2023.
- 3. JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th Edition, Pearson.

References Books:

- 1. The complete Reference Java, 11th edition, Herbert Schildt, TMH
- 2. Introduction to Java programming, 7th Edition, Y Daniel Liang, Pearson

Online Resources:

- 1. <u>https://nptel.ac.in/courses/106/105/106105191/</u>
- 2. <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012880464547</u> <u>618816347_shared/overview</u>

L	Т	Р	С
0	1	2	2

(23A05304) PYTHON PROGRAMMING (SKILL ENHANCEMENT COURSE)

Course Objectives: The main objectives of the course are to

- Introduce core programming concepts of Python programming language.
- Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries
- Implement Functions, Modules and Regular Expressions in Python Programming and to create practical and contemporary applications using these

Course Outcomes: After completion of the course, students will be able to

- Classify data structures of Python (L4)
- Apply Python programming concepts to solve a variety of computational problems (L3)
- Understand the principles of object-oriented programming (OOP) in Python, including classes, objects, inheritance, polymorphism, and encapsulation, and apply them to design and implement Python programs (L3)
- Become proficient in using commonly used Python libraries and frameworks such as JSON, XML, NumPy, pandas (L2)
- Exhibit competence in implementing and manipulating fundamental data structures such as lists, tuples, sets, dictionaries (L3)
- Propose new solutions to computational problems (L6)

UNTI-I: History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook.

Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language.

Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

Sample Experiments:

- 1. Write a program to find the largest element among three Numbers.
- 2. Write a Program to display all prime numbers within an interval
- 3. Write a program to swap two numbers without using a temporary variable.
- 4. Demonstrate the following Operators in Python with suitable examples.
 i) Arithmetic Operators ii) Relational Operators iii) Assignment Operatorsiv) Logical Operators v) Bit wise Operators vi) Ternary Operator vii) Membership Operators viii) Identity Operators
- 5. Write a program to add and multiply complex numbers
- 6. Write a program to print multiplication table of a given number.

UNIT-II: Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments. **Strings:** Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings. **Lists:** Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

Sample Experiments:

- 7. Write a program to define a function with multiple return values.
- 8. Write a program to define a function using default arguments.
- 9. Write a program to find the length of the string without using any library functions.
- 10. Write a program to check if the substring is present in a given string or not.
- 11. Write a program to perform the given operations on a list:
 - i. Addition ii. Insertion iii. slicing
- 12. Write a program to perform any 5 built-in functions by taking any list.

UNIT-III: Dictionaries: Creating Dictionary, Accessing and Modifying key:value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozenset.

Sample Experiments:

- 13. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
- 14. Write a program to count the number of vowels in a string (No control flow allowed).
- 15. Write a program to check if a given key exists in a dictionary or not.
- 16. Write a program to add a new key-value pair to an existing dictionary.
- 17. Write a program to sum all the items in a given dictionary.

UNIT-IV: Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

<Sample Experiments:

- 18. Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
- 19. Python program to print each line of a file in reverse order.
- 20. Python program to compute the number of characters, words and lines in a file.
- 21. Write a program to create, display, append, insert and reverse the order of the items in the array.
- 22. Write a program to add, transpose and multiply two matrices.
- 23. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

UNIT-V: Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

- 24. Python program to check whether a JSON string contains complex object or not.
- 25. Python Program to demonstrate NumPy arrays creation using array () function.
- 26. Python program to demonstrate use of ndim, shape, size, dtype.
- 27. Python program to demonstrate basic slicing, integer and Boolean indexing.
- 28. Python program to find min, max, sum, cumulative sum of array
- 29. Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
 - a) Apply head () function to the pandas data frame
 - b) Perform various data selection operations on Data Frame
- 30. Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib

Reference Books:

- 1. Gowrishankar S, Veena A., Introduction to Python Programming, CRC Press.
- 2. Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2ndEdition, Pearson, 2024
- 3. Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

Online Learning Resources/Virtual Labs:

- 1. https://www.coursera.org/learn/python-for-applied-data-science-ai
- 2. https://www.coursera.org/learn/python?specialization=python#syllabus

L	Т	Р	С
2	0	0	0

(23A99301) ENVIRONMENTAL SCIENCE

Course Objectives:

- To make the students to get awareness on environment.
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

UNIT I

Multidisciplinary Nature of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem.
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V

Human Population and the Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

References:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

II Year B.Tech. CSE – II Semester

2	0	0	2

(23A52402a) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objectives:

- To inculcate the basic knowledge of microeconomics and financial accounting
- To make the students learn how demand is estimated for different products, inputoutput relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements.

Course Outcomes:

- Define the concepts related to Managerial Economics, financial accounting and management(L2)
- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets (L2)
- Apply the Concept of Production cost and revenues for effective Business decision (L3)
- Analyze how to invest their capital and maximize returns (L4)
- Evaluate the capital budgeting techniques. (L5)
- Develop the accounting statements and evaluate the financial performance of business entity (L5)

UNIT - I Managerial Economics

Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting-Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT - II Production and Cost Analysis

Introduction – Nature, meaning, significance, functions and advantages. Production Function– Least- cost combination– Short run and long run Production Function- Isoquants and Is costs, Cost & Break-Even Analysis - Cost concepts and Cost behaviour- Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems).

UNIT - III Business Organizations and Markets

Introduction – Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly- Monopolistic Competition– Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT - IV Capital Budgeting

Introduction – Nature, meaning, significance. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT - V Financial Accounting and Analysis

Introduction – Concepts and Conventions- Double-Entry Bookkeeping, Journal, Ledger, Trial Balance-Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). Introduction to Financial Analysis - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH.

Reference Books:

- 1. Ahuja Hl Managerial economics Schand.
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt https://www.slideshare.net/rossanz/production-and-cost-45827016 https://www.slideshare.net/darkyla/business-organizations-19917607 https://www.slideshare.net/balarajbl/market-and-classification-of-market https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396 https://www.slideshare.net/ashu1983/financial-accounting

II Year B.Tech. CSE – II Semester

	L	Т	Р	С
	2	0	0	2
!				

(23A52402b) ORGANISATIONAL BEHAVIOUR

Course Objectives:

- To enable student's comprehension of organizational behavior
- To offer knowledge to students on self-motivation, leadership and management
- To facilitate them to become powerful leaders
- To Impart knowledge about group dynamics
- To make them understand the importance of change and development

Course Outcomes:

- Define the Organizational Behaviour, its nature and scope. (L2)
- Understand the nature and concept of Organizational behaviour (L2)
- Apply theories of motivation to analyse the performance problems (L3)
- Analyse the different theories of leadership (L4)
- Evaluate group dynamics (L5)
- Develop as powerful leader (L5)

UNIT - I Introduction to Organizational Behavior

Meaning, definition, nature, scope and functions - Organizing Process – Making organizing effective -Understanding Individual Behaviour –Attitude -Perception - Learning – Personality.

UNIT - II Motivation and Leading

Theories of Motivation- Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Vroom's theory of expectancy – Mc Cleland's theory of needs–Mc Gregor's theory X and theory Y– Adam's equity theory.

UNIT - III Organizational Culture

Introduction – Meaning, scope, definition, Nature - Organizational Climate - Leadership -Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management -Evaluating Leader.

UNIT - IV Group Dynamics

Introduction – Meaning, scope, definition, Nature- Types of groups - Determinants of group behaviour - Group process – Group Development - Group norms - Group cohesiveness -Small Groups - Group decision making - Team building - Conflict in the organization– Conflict resolution

UNIT - V Organizational Change and Development

Introduction –Nature, Meaning, scope, definition and functions- Organizational Culture - Changing the Culture – Change Management – Work Stress Management - Organizational management – Managerial implications of organization's change and development

Textbooks:

- 1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12 Th edition.
- 2. P Subba Ran, Organisational Behaviour, Himalya Publishing House.
- 3. Reference Books:
- 4. McShane, Organizational Behaviour, TMH
- 5. Nelson, Organisational Behaviour, Thomson.
- 6. Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson.

7. Aswathappa, Organisational Behaviour, Himalaya.

Online Learning Resources:

- 1. <u>https://www.slideshare.net/Knight1040/organizational-culture</u> 9608857s://www.slideshare.net/AbhayRajpoot3/motivation-165556714 https://www.slideshare.net/harshrastogi1/group-dynamics-159412405
- 2. https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951

II Year B.Tech. CSE – II Semester

L	Т	Р	С
2	0	0	2

(23A52402c) BUSINESS ENVIRONMENT

Course Objectives:

- To make the student to understand about the business environment
- To enable them in knowing the importance of fiscal and monitory policy
- To facilitate them in understanding the export policy of the country
- To Impart knowledge about the functioning and role of WTO
- To Encourage the student in knowing the structure of stock markets

Course Outcomes:

- Define Business Environment and its Importance. (L2)
- Understand various types of business environment. (L2)
- Apply the knowledge of Money markets in future investment (L3)
- Analyse India's Trade Policy (L4)
- Evaluate fiscal and monitory policy (L5)
- Develop a personal synthesis and approach for identifying business opportunities (L5)

UNIT - I Overview of Business Environment

Introduction – meaning Nature, Scope, significance, functions and advantages. Types-Internal &External, Micro and Macro. Competitive structure of industries -Environmental analysis- advantages & limitations of environmental analysis.

UNIT - II Fiscal & Monetary Policy

Introduction – Nature, meaning, significance, functions and advantages. Public Revenues -Public Expenditure - Evaluation of recent fiscal policy of GOI. Highlights of Budget-Monetary Policy - Demand and Supply of Money –RBI -Objectives of monetary and credit policy - Recent trends- Role of Finance Commission.

UNIT - III India's Trade Policy

Introduction – Nature, meaning, significance, functions and advantages. Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank -Balance of Payments– Structure & Major components - Causes for Disequilibrium in Balance of Payments - Correction measures.

UNIT - IV World Trade Organization

Introduction – Nature, significance, functions and advantages. Organization and Structure -Role and functions of WTO in promoting world trade - GATT -Agreements in the Uruguay Round –TRIPS, TRIMS - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

UNIT - V Money Markets and Capital Markets

Introduction – Nature, meaning, significance, functions and advantages. Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI – Stock Exchanges - Investor protection and role of SEBI, Introduction to international finance.

Textbooks:

 Francis Cherunilam, International Business: Text and Cases, Prentice Hall of India.
 K. Aswathappa, Essentials of Business Environment: Texts and Cases & Exercises 13th Revised Edition.HPH

Reference Books:

1.K. V. Sivayya, V. B. M Das, Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.

2. Sundaram, Black, International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.

3. Chari. S. N, International Business, Wiley India.

4.E. Bhattacharya, International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245 https://www.slideshare.net/rbalsells/fiscal-policy-ppt https://www.slideshare.net/aguness/monetary-policy-presentationppt https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982 https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt https://www.slideshare.net/viking2690/wto-ppt-60260883 https://www.slideshare.net/prateeknepal3/ppt-mo

II Year B.Tech. CSE – II Semester

L	Т	Р	С
3	0	0	3

(23A54401) PROBABILITY & STATISTICS

(Common to CSE, CSE (AI &ML), CSE(IoT), CSE(AI), AI&ML, CS, IT)

Course Outcomes: After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Acquire knowledge in finding the analysis of the data quantitatively or categoricallyand various statistical elementary tools.	L2, L3
CO2	Develop skills in designing mathematical models involving probability, random variables and the critical thinking in the theory of probability and its applications in real life problems.	L3, L5
CO3	Apply the theoretical probability distributions like binomial, Poisson, and Normal in the relevant application areas.	L3
CO4	Analyze to test various hypotheses included in theory and types of errors for large samples.	L2, L3
CO5	Apply the different testing tools like t-test, F-test, chi-square test to analyze the relevant real life problems.	L3,L5

UNITI : Descriptive statistics

Statistics Introduction, Population vs Sample, Collection of data, primary and secondary data, Measures of Central tendency, Measures of Variability (spread or variance) Skewness, Kurtosis, correlation, correlation coefficient, rank correlation, regression coefficients, method of least squares, regression lines.

UNIT II Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

UNITIII Probability distributions

Probability distributions: Binomial, Poisson and Normal-their properties (Chebyshevs inequality). Approximation of the binomial distribution to normal distribution.

UNIT IV Estimation and Testing of hypothesis, large sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test. Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

UNIT V Small sample tests

Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

Textbooks:

- 1. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

Reference Books:

- 1. S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2. W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.
- 3. B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education.

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_ma74/preview
- 2. https://onlinecourses.nptel.ac.in/noc22_mg31/preview

II Year B.Tech. CSE – II Semester

L	Т	Р	С
3	0	0	3

(23A35401T) OPERATING SYSTEMS

Course Objectives: The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

Course Outcomes: After completion of the course, students will be able to

- Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication. (L1)
- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection. (L2)
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system. (L3)
- Illustrate different conditions for deadlock and their possible solutions. (L2)
- Analyze the memory management and its allocation policies. (L4)

UNIT - I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open-Source Operating Systems **System Structures:** Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Building and Booting an Operating System, Operating system debugging

UNIT - II

Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication. **Threads and Concurrency:** Multithreading models, Thread libraries, Threading issues. **CPU Scheduling:** Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling.

UNIT – III

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. **Deadlocks:** system Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.

UNIT - IV

Memory-Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping. **Virtual Memory Management:** Introduction, Demand paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing. **Storage Management:** Overview of Mass Storage Structure, HDD Scheduling.

UNIT - V

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system Operations, Directory implementation, Allocation method, Free space management; File-System Internals: File-System Mounting, Partitions and Mounting, File Sharing. **Protection:** Goals of protection, Principles of protection, Protection Rings, Domain of protection, Access matrix.

Textbooks:

- 1. Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018.
- 2. Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson, 2016

Reference Books:

- Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018
- Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw- Hill, 2013

Online Learning Resources:

- 1. <u>https://nptel.ac.in/courses/106/106/106106144/</u>
- 2. http://peterindia.net/OperatingSystems.html

II Year B.Tech. CSE – II Semester

L	Т	Р	С
3	0	0	3

(23A05402T) DATABASE MANAGEMENT SYSTEMS

Course Objectives: The main objective of the course is to

- Introduce database management systems and to give a good formal foundation on the relational model of data and usage of Relational Algebra
- Introduce the concepts of basic SQL as a universal Database language
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques

Course Outcomes: After completion of the course, students will be able to

- Understand the basic concepts of database management systems (L2)
- Analyze a given database application scenario to use ER model for conceptual design of the database (L4)
- Utilize SQL proficiently to address diverse query challenges (L3).
- Employ normalization methods to enhance database structure (L3)
- Assess and implement transaction processing, concurrency control and database recovery protocols in databases. (L4)

UNIT I: Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database.

Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

Unit II: Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance, Relational Algebra, Relational Calculus. BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update).

UNIT III: SQL: Basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational set operations.

UNIT IV: Schema Refinement (Normalization):Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form(BCNF), MVD, Fourth normal form(4NF), Fifth Normal Form (5NF).

UNIT V: Transaction Concept: Transaction State, ACID properties, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm.

Introduction to Indexing Techniques: B+ Trees, operations on B+Trees, Hash Based Indexing:

Textbooks:

- 1. Database Management Systems, 3rd edition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2. Database System Concepts,5th edition, Silberschatz, Korth, Sudarsan,TMH (For Chapter 1 and Chapter 5)

Reference Books:

- 1. Introduction to Database Systems, 8thedition, C J Date, Pearson.
- 2. Database Management System, 6th edition, RamezElmasri, Shamkant B. Navathe, Pearson
- 3. Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

Web-Resources:

- 1. https://nptel.ac.in/courses/106/105/106105175/
- 2. <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0127580666728202</u> 2456 shared/overview

II Year B.Tech. CSE (AI) – II Semester

L	Т	Р	С
3	0	0	3

(23A05403) SOFTWARE ENGINEERING

Course Objectives: The objectives of this course are to introduce

- Software life cycle models, Software requirements and SRS document.
- Project Planning, quality control and ensuring good quality software.
- Software Testing strategies, use of CASE tools, Implementation issues, validation & verification procedures.

Course Outcomes: After completion of the course, students will be able to

- Perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance (L3)
- Analyse various software engineering models and apply methods for design and development of software projects. (L4)
- Develop system designs using appropriate techniques. (L3)
- Understand various testing techniques for a software project. (L2)
- Apply standards, CASE tools and techniques for engineering software projects (L3)

UNIT I:

Introduction: Evolution, Software development projects, Exploratory style of software developments, Emergence of software engineering, Notable changes in software development practices, Computer system engineering.

Software Life Cycle Models: Basic concepts, Waterfall model and its extensions, Rapid application development, Agile development model, Spiral model.

UNIT II:

Software Project Management: Software project management complexities, Responsibilities of a software project manager, Metrics for project size estimation, Project estimation techniques, Empirical Estimation techniques, COCOMO, Halstead's software science, risk management.

Requirements Analysis And Specification: Requirements gathering and analysis, Software Requirements Specification (SRS), Formal system specification, Axiomatic specification, Algebraic specification, Executable specification and 4GL.

UNIT III:

Software Design: Overview of the design process, How to characterize a good software design? Layered arrangement of modules, Cohesion and Coupling. approaches to software design.

Agility: Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models, Tool Set for the Agile Process (Text Book 2)

Function-Oriented Software Design: Overview of SA/SD methodology, Structured analysis, Developing the DFD model of a system, Structured design, Detailed design, and Design Review.

User Interface Design: Characteristics of a good user interface, Basic concepts, Types of user interfaces, Fundamentals of component-based GUI development, and user interface design methodology.

UNIT IV:

Coding And Testing: Coding, Code review, Software documentation, Testing, Black-box testing, White-Box testing, Debugging, Program analysis tools, Integration testing, Testing object-oriented programs, Smoke testing, and Some general issues associated with testing. **Software Reliability And Quality Management:** Software reliability. Statistical testing,

Software quality, Software quality management: Software reliability. Statistical testing, Software quality, Software quality management system, ISO 9000. SEI Capability maturity model. Few other important quality standards, and Six Sigma.

UNIT V:

Computer-Aided Software Engineering (Case): CASE and its scope, CASE environment, CASE support in the software life cycle, other characteristics of CASE tools, Towards second generation CASE Tool, and Architecture of a CASE Environment.

Software Maintenance: Characteristics of software maintenance, Software reverse engineering, Software maintenance process models and Estimation of maintenance cost.

Software Reuse: reuse- definition, introduction, reason behind no reuse so far, Basic issues in any reuse program, A reuse approach, and Reuse at organization level.

Text Books:

- 1. Fundamentals of Software Engineering, Rajib Mall, 5th Edition, PHI.
- 2. Software Engineering A practitioner's Approach, Roger S. Pressman, 9th Edition, Mc-Graw Hill International Edition.

Reference Books:

- 1. Software Engineering, Ian Sommerville, 10th Edition, Pearson.
- 2. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.

e-Resources:

- 1) https://nptel.ac.in/courses/106/105/106105182/
- 2) <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012605895063871</u> <u>48827_shared/overview</u>
- 3) <u>https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003</u> <u>904735_shared/overview</u>

II Year B.Tech. CSE –II Semester

L	Т	Р	С
0	0	3	1.5

(23A35401P) OPERATING SYSTEMS LAB

Course Objectives: The main objectives of the course are to

- Provide insights into system calls, file systems, semaphores,
- Develop and debug CPU Scheduling algorithms, page replacement algorithms, thread implementation
- Implement Bankers Algorithms to Avoid the Dead Lock

Course Outcomes: After completion of the course, students will be able to

- 1. Trace different CPU Scheduling algorithms (L2).
- 2. Implement Bankers Algorithms to Avoid the Dead Lock (L3).
- 3. Evaluate Page replacement algorithms (L5).
- 4. Illustrate the file organization techniques (L4).
- 5. Illustrate Inter process Communication and concurrent execution of threads (L4)

Experiments covering the Topics:

- UNIX fundamentals, commands & system calls
- CPU Scheduling algorithms, thread processing
- IPC, semaphores, monitors, deadlocks
- Page replacement algorithms, file allocation strategies
- Memory allocation strategies

Sample Experiments:

- 1. Practicing of Basic UNIX Commands.
- 2. Write programs using the following UNIX operating system calls fork, exec, getpid, exit, wait, close, stat, opendir and readdir
- 3. Simulate UNIX commands like cp, ls, grep, etc.,
- 4. Simulate the following CPU scheduling algorithms a) FCFS b) SJF c) Priority d) Round Robin
- 5. Control the number of ports opened by the operating system with a) Semaphore b) Monitors.
- 6. Write a program to illustrate concurrent execution of threads using pthreads library.
- 7. Write a program to solve producer-consumer problem using Semaphores.
- Implement the following memory allocation methods for fixed partition

 a) First fit b) Worst fit c) Best fit
- 9. Simulate the following page replacement algorithmsa) FIFO b) LRU c) LFU
- 10. Simulate Paging Technique of memory management.
- 11. Implement Bankers Algorithm for Dead Lock avoidance and prevention
- 12. Simulate the following file allocation strategiesa) Sequential b) Indexed c) Linked

Reference Books:

1. Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018.

- Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson, 2016
 Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018
- 4. Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw-Hill, 2013

Online Learning Resources:

- 1. https://www.cse.iitb.ac.in/~mythili/os/
- 2. http://peterindia.net/OperatingSystems.html

II Year B.Tech. CSE – II Semester

L	Т	Р	С
0	0	3	1.5

(23A05402P) DATABASE MANAGEMENT SYSTEMS LAB

Course Objectives: This Course will enable students to

- Populate and query a database using SQL DDL/DML Commands
- Declare and enforce integrity constraints on a database
- Writing Queries using advanced concepts of SQL
- Programming PL/SQL including procedures, functions, cursors and triggers.

Course Outcomes: After completion of the course, students will be able to

- Utilizing Data Definition Language (DDL), Data Manipulation Language (DML), and Data Control Language (DCL) commands effectively within a database environment (L3)
- Constructing and execute queries to manipulate and retrieve data from databases. (L3)
- Develop application programs using PL/SQL. (L3)
- Analyze requirements and design custom Procedures, Functions, Cursors, and Triggers, leveraging their capabilities to automate tasks and optimize database functionality (L4)
- Establish database connectivity through JDBC (Java Database Connectivity) (L3)

Experiments covering the topics:

- DDL, DML, DCL commands
- Queries, nested queries, built-in functions,
- PL/SQL programming- control structures
- Procedures, Functions, Cursors, Triggers,
- Database connectivity- ODBC/JDBC

Sample Experiments:

- 1. Creation, altering and droping of tables and inserting rows into a table (use constraints while creating tables) examples using SELECT command.
- 2. Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints. Example:- Select the roll number and name of the student who secured fourth rank in the class.
- 3. Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
- 4. Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
- 5.
- i. Create a simple PL/SQL program which includes declaration section, executable section and exception –Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found)
- ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.

- 6. Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
- 7. Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE-APPLICATION ERROR.
- 8. Programs development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
- 9. Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
- 10. Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
- 11. Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
- 12. Create a table and perform the search operation on table using indexing and nonindexing techniques.
- 13. Write a Java program that connects to a database using JDBC
- 14. Write a Java program to connect to a database using JDBC and insert values into it
- 15. Write a Java program to connect to a database using JDBC and delete values from it

Text Books/Suggested Reading:

- 1. Oracle: The Complete Reference by Oracle Press
- 2. Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
- 3. Rick F Vander Lans, "Introduction to SQL", Fourth Edition, Pearson Education, 2007

II Year B.Tech. CSE –II Semester

L	Т	Р	С
0	1	2	2

(23A52401) FULL STACK DEVELOPMENT – 1 (Skill Enhancement Course)

Course Objectives: The main objectives of the course are to

- Make use of HTML elements and their attributes for designing static web pages
- Build a web page by applying appropriate CSS styles to HTML elements
- Experiment with JavaScript to develop dynamic web pages and validate forms

Course Outcomes:

- CO1: Design Websites. (L6)
- CO2: Apply Styling to web pages. (L4)
- CO3: Make Web pages interactive. (L6)
- CO4: Design Forms for applications. (L6)
- CO5: Choose Control Structure based on the logic to be implemented. (L3)
- CO6: Understand HTML tags, Attributes and CSS properties (L2)

Experiments covering the Topics:

- Lists, Links and Images
- HTML Tables, Forms and Frames
- HTML 5 and Cascading Style Sheets, Types of CSS
- Selector forms
- CSS with Color, Background, Font, Text and CSS Box Model
- Applying JavaScript internal and external, I/O, Type Conversion
- JavaScript Conditional Statements and Loops, Pre-defined and User-defined Objects
- JavaScript Functions and Events
- Node.js

Sample Experiments:

1. Lists, Links and Images

- a. Write a HTML program, to explain the working of lists.
- Note: It should have an ordered list, unordered list, nested lists and ordered list in an unordered list and definition lists.
- b. Write a HTML program, to explain the working of hyperlinks using <a> tag and href, target Attributes.
- c. Create a HTML document that has your image and your friend's image with a specific height and width. Also when clicked on the images it should navigate to their respective profiles.
- d. Write a HTML program, in such a way that, rather than placing large images on a page, the preferred technique is to use thumbnails by setting the height and width parameters to something like to 100*100 pixels. Each thumbnail image is also a link to a full sized version of the image. Create an image gallery using this technique

2. HTML Tables, Forms and Frames

• Write a HTML program, to explain the working of tables. (use tags: , , , and attributes: border, rowspan, colspan)

- Write a HTML program, to explain the working of tables by preparing a timetable. (Note: Use <caption> tag to set the caption to the table & also use cell spacing, cell padding, border, rowspan, colspan etc.).
- Write a HTML program, to explain the working of forms by designing Registration form. (Note: Include text field, password field, number field, date of birth field, checkboxes, radio buttons, list boxes using <select>&<option> tags, <text area> and two buttons ie: submit and reset. Use tables to provide a better view).
- Write a HTML program, to explain the working of frames, such that page is to be divided into 3 parts on either direction. (Note: first frame image, second frame paragraph, third frame □ hyperlink. And also make sure of using "no frame" attribute such that frames to be fixed).

3. HTML 5 and Cascading Style Sheets, Types of CSS

- a. Write a HTML program, that makes use of <article>, <aside>, <figure>, <figcaption>, <footer>, <header>, <main>, <nav>, <section>, <div>, tags.
- b. Write a HTML program, to embed audio and video into HTML web page.
- c. Write a program to apply different types (or levels of styles or style specification formats)
 inline, internal, external styles to HTML elements. (identify selector, property and value).

4. Selector forms

- a. Write a program to apply different types of selector forms
 - Simple selector (element, id, class, group, universal)
 - Combinator selector (descendant, child, adjacent sibling, general sibling)
 - Pseudo-class selector
 - Pseudo-element selector
 - Attribute selector

5. CSS with Color, Background, Font, Text and CSS Box Model

- a. Write a program to demonstrate the various ways you can reference a color in CSS.
- b. Write a CSS rule that places a background image halfway down the page, tilting it horizontally. The image should remain in place when the user scrolls up or down.
- c. Write a program using the following terms related to CSS font and text:
 - i. font-size ii. font-weight iii. font-style
 - iv. text-decoration v. text-transformation vi. text-alignment
- d. Write a program, to explain the importance of CSS Box model using
 - i. Content ii. Border iii. Margin iv. padding

6. Applying JavaScript - internal and external, I/O, Type Conversion

- a. Write a program to embed internal and external JavaScript in a web page.
- b. Write a program to explain the different ways for displaying output.
- c. Write a program to explain the different ways for taking input.
- d. Create a webpage which uses prompt dialogue box to ask a voter for his name and age. Display the information in table format along with either the voter can vote or not

7. JavaScript Pre-defined and User-defined Objects

- a. Write a program using document object properties and methods.
- b. Write a program using window object properties and methods.
- c. Write a program using array object properties and methods.
- d. Write a program using math object properties and methods.

- e. Write a program using string object properties and methods.
- f. Write a program using regex object properties and methods.
- g. Write a program using date object properties and methods.
- h. Write a program to explain user-defined object by using properties, methods, accessors, constructors and display.

8. JavaScript Conditional Statements and Loops

- a. Write a program which asks the user to enter three integers, obtains the numbers from the user and outputs HTML text that displays the larger number followed by the words "LARGER NUMBER" in an information message dialog. If the numbers are equal, output HTML text as "EQUAL NUMBERS".
- b. Write a program to display week days using switch case.
- c. Write a program to print 1 to 10 numbers using for, while and do-while loops.
- d. Write aprogram to print data in object using for-in, for-each and for-of loops
- e. Develop a program to determine whether a given number is an 'ARMSTRONG NUMBER' or not. [Eg: 153 is an Armstrong number, since sum of the cube of the digits is equal to the number i.e., 13 + 53 + 33 = 153]
- f. Write a program to display the denomination of the amount deposited in the bank in terms of 100's, 50's, 20's, 10's, 5's, 2's & 1's. (Eg: If deposited amount is Rs.163, the output should be 1-100's, 1-50's, 1- 10's, 1-2's & 1-1's)

9. Javascript Functions and Events

- a. Design a appropriate function should be called to display
 - Factorial of that number
 - Fibonacci series up to that number
 - Prime numbers up to that number
 - Is it palindrome or not
- b. Design a HTML having a text box and four buttons named Factorial, Fibonacci, Prime, and Palindrome. When a button is pressed an appropriate function should be called to display
 - 11. Factorial of that number
 - 12. Fibonacci series up to that number
 - 13. Prime numbers up to that number
 - 14. Is it palindrome or not
- c. Write a program to validate the following fields in a registration page
 - i. Name (start with alphabet and followed by alphanumeric and the length should not be less than 6 characters)
 - ii. Mobile (only numbers and length 10 digits)
 - iii. E-mail (should contain format like <u>xxxxxx@xxxxxx.xxx</u>)

Textbooks:

- 1. Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
- 2. Web Programming with HTML5, CSS and JavaScript, John Dean, Jones & Bartlett Learning, 2019 (Chapters 1-11).
- 3. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.

Web Links:

- 1. <u>https://www.w3schools.com/html</u>
- 2. https://www.w3schools.com/css
- 3. https://www.w3schools.com/js/
- 4. <u>https://www.w3schools.com/nodejs</u>
- 5. https://www.w3schools.com/typescript

II Year B.Tech. CSE -II Semester

L	Т	P	С
1	0	2	2

(23A99401) DESIGN THINKING FOR INNOVATION

Course Objectives:

The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcomes:

- Define the concepts related to design thinking. (L1, L2)
- Explain the fundamentals of Design Thinking and innovation (L1, L2)
- Apply the design thinking techniques for solving problems in various sectors. (L3)
- Analyse to work in a multidisciplinary environment (L4)
- Evaluate the value of creativity (L5)
- Formulate specific problem statements of real time issues (L3, L6)

UNIT I Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT II Design Thinking Process

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT III Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications- Innovation towards product design- Case studies

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT V Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs-

Design thinking for Startups- Defining and testing Business Models and Business Cases-Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

- 1. Tim Brown, Change by design, Harper Bollins (2009)
- 2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons.

Reference Books:

- 1. David Lee, Design Thinking in the Classroom, Ulysses press
- 2. Shrutin N Shetty, Design the Future, Norton Press
- 3. William Lidwell, Universal Principles of Design- Kritinaholden, Jill Butter.
- 4. Chesbrough.H, The Era of Open Innovation 2013

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

COMMUNITY SERVICE PROJECT

.....Experiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development.
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will benefit with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in 6 weeks for the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, housewives, etc
- A logbook must be maintained by each of the students, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty in charge.
- An evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.

- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project reports should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training.

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES

BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.

• Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills.

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity.

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research.

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment.
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals.
- New energy, enthusiasm and perspectives applied to community work.
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions, and modifications. Colleges are expected to focus on specific local issues for this kind of project. The students are expected to carry out these projects with involvement, commitment, responsibility, and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of project. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting should be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues

40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programs

Programs for School Children

- 1. Reading Skill Program (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Program on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Program on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation

- iv. Animal Husbandry
- v. Horticulture
- vi. Fisheries
- vii. Sericulture
- viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
- xi. Law & Order
- xii. Excise and Prohibition
- xiii. Mines and Geology
- xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also, with the Governmental Departments. If the program is rolled out, the District Administration could be roped in for the successful deployment of the program.
- An in-house training and induction program could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmesto be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below-listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to experiential learning about the community and its dynamics. Programs could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks' works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University. Throughout the Community Service Project, a daily logbook need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

B.TECH. - COMPUTER SCIENCE & ENGINEERING (DATA SCIENCE) Course Structure (R20) – III & IV Year

Semester-V						
S.No. Course Code		Course Name		Т	Р	Credits
1.	20A32501T	Data Management Techniques	3	0	0	3
2.	20A05502T	Artificial Intelligence	3	0	0	3
3.	20A32502	Foundations of Data Analytics	3	0	0	3
4.		Professional Elective Course – I	3	0	0	3
	20A12701a	Advanced Databases				
	20A12501a	Data Warehousing and Data Mining	Data Warehousing and Data Mining			
	20A05302T	Object Oriented Programming through Java				
5.		Dpen Elective Course – I 3		0	0	3
6.	20A32501P	Data Management Techniques Lab003		3	1.5	
7.	20A05502P	Artificial Intelligence Lab	0	0	3	1.5
8.		Skill oriented course – III 1 0 2		2	2	
	20A32503	Digital and Social Media Marketing				
9.	9. 20A32504 Evaluation of Community Service Project					1.5
		Total				21.5

Open Elective-I

S.No	Course	Course Name	Offered by the Dept.
	Code		
1	20A01505	Building Technology	CE
2	20A02505	Electric Vehicles	EEE
3	20A03505	3D Printing Technology	ME
4	20A04507	MATLAB Programming for Engineers	ECE/EEE
5	20A04508	Introduction to Control Systems	ECE/EEE
6	20A27505	Computer Applications in Food Processing	FT
7	20A54501	Optimization Techniques	Mathematics
8	20A56501	Materials Characterization Techniques	Physics
9	20A51501	Chemistry of Energy Materials	Chemistry

Note:

1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.

2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.

3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline

	Semester-VI					
S.No	Course Code	e Course Name	L	Т	Р	Credits
1.	20A05602T	Machine Learning	3	0	0	3
2.	20A05701a	Cloud Computing	3	0	0	3
3.	20A32601T	Data Visualization	3	0	0	3
4.		Professional Elective Course– II	3	0	0	3
	20A32602a	Predictive Analytics				
	20A05603T	Internet of Things				
	20A12602a	Computer Graphics				
5.		Open Elective Course – II	3	0	0	3
6.	20A05602P	Machine Learning Lab	0	0	3	1.5
7.	20A32601P	Data Visualization lab	0	0	3	1.5
8.	20A12604	Cloud Computing lab	0	0	3	1.5
9.		Skill oriented course - IV	1	0	2	2
	20A52401	Soft Skills				
10.	20A99601	Mandatory Non-credit Course Intellectual Property Rights & Patents	2	0	0	0
	Total 21.5					
	Industry In	ternship (Mandatory) for 6 - 8 weeks duration during su	ımmer	vaca	tion	

Open Elective-II

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01605	Environmental Economics	CE
2	20A02605	Smart Electric Grid	EEE
3	20A03605	Introduction to Robotics	ME
4	20A04605	Signal Processing	ECE
5	20A04606	Basic VLSI Design	ECE
6	20A27605	Food Refrigeration and Cold Chain Management	FT
7	20A54701	Wavelet Transforms & its applications	Mathematics
8	20A56701	Physics Of Electronic Materials and Devices	Physics
9	20A51701	Chemistry of Polymers and its Applications	Chemistry

	Semester-VII					
S.No.	Course	Course Name	L	Т	Р	Credits
	Code					
1.		Professional Elective Course- III	3	0	0	3
	20A05705a	Cyber Security				
	20A32701a	User Interface Design				
	20A32702b	Process Mining				
2.		Professional Elective Course– IV	3	0	0	3
	20A32702a	Bio Informatics				
	20A05702c	Natural Language Processing				
	20A32702b	Social Network Analysis				
3.		Professional Elective Course– V	3	0	0	3
	20A05703b	Block Chain Technology and Applications				
	20A05703c	Deep Learning				
	20A05702b	Cryptography and Network Security				
4.		Humanities Elective – II	3	0	0	3
	20A52701a	Entrepreneurship and Incubation				
	20A52701b	Management Science				
	20A52701c	Enterprise Resource Planning				
5.		Open Elective Course – III	3	0	0	3
6.		Open Elective Course – IV	3	0	0	3
7.		Skill oriented course – V	1	0	2	2
	20A32703	NoSQL using MongoDB				
	20A32704	Evaluation of Industry Internship				3
				Total		23

Open Elective-III

S.No.	Course Code	Course Name	Offered by the Dept.
1	20A01704	Cost Effective Housing Techniques	CE
2	20A02704	IOT Applications in Electrical Engineering	EEE
3	20A03704	Product Design & Development	ME
4	20A04704	Electronic Sensors	ECE
5	20A04506	Principles of Communication Systems	ECE
6	20A27704	Human Nutrition	FT
7	20A54702	Numerical Methods for Engineers	Mathematics
8	20A56702	Sensors And Actuators for Engineering Applications	Physics
9	20A51702	Chemistry of Nanomaterials and Applications	Chemistry

Open Elective-IV

S.No.	Course Code	Course Name	Offered by the Dept.
1	20A01705	Health, Safety & Environmental management	CE
2	20A02705	Renewable Energy Systems	EEE
3	20A03705	Introduction to Composite Materials	ME
4	20A04705	Microcontrollers and Applications	ECE
5	20A04706	Principles of Cellular & Mobile Communications	ECE
6	20A27705	Waste and Effluent Management	FT
7	20A54703	Number theory & its Applications	Mathematics
8	20A56703	Smart Materials and Devices	Physics
9	20A51703	Green Chemistry and Catalysis for Sustainable	Chemistry

Semester-VIII							
S.No.	Course Code	Course Name	Category	L	Т	Р	Credits
1.20A32801Full Internship & Project work		PR				12	
						Total	12

COURSES OFFERED FOR HONOURS DEGREE IN CSE (DATA SCIENCE)

S.No.	Code	Course Name	Contact He	ours per	
			wee	k	Credits
			L	Т	
1	20A32H01	Data Science for Business	3	1	4
2	20A32H02	Software Project Management using Agile	3	1	4
3	20A30H03	Ethics and Privacy in AI	3	1	4
4	20A30H04	Medical Image Data Processing	3	1	4
	20A32H03	MOOC – I			2
	20A32H04	MOOC - II			2

MOOC Course for 2 credits MOOC Courses for a Total of 2 credits	Big Data Analytics using Spark Deep Learning with TensorFlow	10 weeks (To be considered only for 8 weeks) 5 weeks	https://www.edx.org/course/big-data-analytics-using- spark?source=aw&awc=6798_1657520739_578015a7 e5fc85aba86de3f77adff378&utm_source=aw&utm_m edium=affiliate_partner&utm_content=text- link&utm_term=422873_Edflex https://www.edx.org/course/deep-learning-with- tensorflow?source=aw&awc=6798_1657521273_57ca 8f6c944caac9a0aabd49519739f6&utm_source=aw&ut m_medium=affiliate_partner&utm_content=text- link&utm_term=422873_Edflex
	Data Representation and Visualization in Tableau	4 weeks	https://www.edx.org/course/data-representation-and- visualization-in-tableau
MOOC Course for 2 credits	Data Science: Productivity Tools	8 weeks	https://www.edx.org/course/data-science-productivity- tools?source=aw&awc=6798_1657522115_2a535463f 4ca875a60c8c8eb4e8553b2&utm_source=aw&utm_m edium=affiliate_partner&utm_content=text- link&utm_term=422873_Edflex
MOOC Course for 2 credits	Six Sigma: Analyze, Improve, Control	8 weeks	https://www.edx.org/course/six-sigma-analyze- improve- control?source=aw&awc=6798_1657522256_dd3daa3 84fdef3044ce20596cba19261&utm_source=aw&utm_ medium=affiliate_partner&utm_content=text- link&utm_term=422873_Edflex
MOOC Course for 2 credits	Scalable Data Science	8 weeks	https://onlinecourses.nptel.ac.in/noc22_cs105/preview
MOOC Course for 2 credits	Applied Accelerated Artificial Intelligence	12 weeks (To be considered for 8 weeks)	https://onlinecourses.nptel.ac.in/noc22_cs83/preview

S.No.	Minor Title	Department offering the Minor
1.	Construction Technology	Civil Engineering
2.	Environmental Geotechnology	Civil Engineering
3.	Energy Systems	EEE
4.	3D Printing	ME
5.	Industrial Engineering	ME
6.	Food Science	Food Technology

LIST OF MINORS OFFERED TO CSE (DATA SCIENCE)

3 0 0 3

(20A32501T) DATA MANAGEMENT TECHNIQUES

Pre-requisite DBMS

Course Objectives:

• The objective of the course is to present an introduction to data management techniques with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively.

Course Outcomes:

- Describe the fundamental elements of data management
- Implement the tools and techniques of Data handling System.
- Learn the Data modeling, design and operations
- Apply the security and integrity tools in management system
- Improving the Data usability and Findability using metadata

UNIT IData Management, Data Handling EthicsLecture 8HrsData Management:Introduction, Essential Concepts, Data Management FrameworksData Handling Ethics:Introduction, Business Drivers, Essential Concepts:Ethical Principles forData, Principles Behind Data Privacy Law, Online Data in an Ethical Context, Risks of UnethicalData Ethics: and Governance

UNIT IIData Governance, Data ArchitectureLecture 10HrsData Governance:Introduction, Activities, Tools and Techniques, Implementation Guidelines:Organization and Culture, Adjustment and Communication, Metrics

Data Architecture: -Introduction: Business Drivers, Data Architecture Outcomes and Practices, Essential Concepts. Activities, Tools: Data Modelling Tools, Asset Management Software, Graphical Design Applications., Techniques: LifecycleProjections, Diagramming Clarity, Implementation Guidelines, Data Architecture Governance

UNIT IIIData Modelling and Design, Data Storage and Operations Lecture 8Hrs Data Modelling and Design: Introduction, Activities, BestPractices, Data Model Governance Data Storage and Operations: Introduction, Activities, Tools, Techniques, Implementation Guidelines, Data Storage and Operations Governance

UNIT IVData Security, Data Integration and Interoperability Lecture 9Hrs Data Security: Introduction, Activities, Tools, Techniques, Implementation Guidelines, Data Security Governance, Works Cited / Recommended

Data Integration and Interoperability: Introduction, Data Integration Activities, Tools, Techniques: Implementation Guidelines, DII Governance

UNIT VMetadata Management, Big Data and Data Science, Data Lecture 8Hrs Management Maturity Assessment

Metadata Management: Introduction, Activities, Tools, Techniques, Implementation Guidelines, Metadata Governance, Works Cited / Recommended.

Big Data and Data Science: Introduction, Activities, Tools, Implementation Guidelines, Big Data and Data Science Governance

Data Management Maturity Assessment: - Introduction, Activities Tools, Techniques, Guidelines for a DMMA, Maturity Management Governance

Textbooks:

 "DAMA-DMBOK: Data Management body of Knowledge", 2nd Edition, Technics Publications, 2017

Reference Books:

- 1. Data Mining: Concepts and Techniques (The Morgan Kaufman series in Data Management Systems),2011
- Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining (ACM Books) Paperback – 30 June 2016by ChengXiangZhai (Author), Sean Massung (Author).

Online Learning Resources:

1)Google Data Analytics Professional Certificate | Coursera

3 0 0 3

(20A05502T) ARTIFICIAL INTELLIGENCE COMMON TO CSE, IT, CSD, CSE (DS), CSE(IOT)

Course Objectives:

This course is designed to:

- Introduce Artificial Intelligence
- Teach about the machine learning environment
- Present the searching Technique for Problem Solving
- Introduce Natural Language Processing and Robotics •

Course Outcomes:

After completion of the course, students will be able to

- Apply searching techniques for solving a problem
- Design Intelligent Agents
- Develop Natural Language Interface for Machines
- Design mini robots •
- Summarize past, present and future of Artificial Intelligence

UNIT I Introduction

Introduction: What is AI, Foundations of AI, History of AI, The State of Art.

Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

Solving Problems by searching **UNIT II** Problem Solving Agents, Example problems, Searching for Solutions, Uninformed Search Strategies, Informed search strategies, Heuristic Functions, Beyond Classical Search: Local Search Algorithms and Optimization Problems, Local Search in Continues Spaces, Searching with Nondeterministic Actions, Searching with partial observations, online search agents and unknown environments.

UNIT III Reinforcement Learning & Natural Language Processing Lecture 8Hrs Reinforcement Learning: Introduction, Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of RL

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction.

UNIT IV Natural Language for Communication

Natural Language for Communication: Phrase structure grammars, Syntactic Analysis, Augmented Grammars and semantic Interpretation, Machine Translation, Speech Recognition

Perception: Image Formation, Early Image Processing Operations, Object Recognition by appearance, Reconstructing the 3D World, Object Recognition from Structural information, Using Vision.

UNIT V **Robotics**

Robotics: Introduction, Robot Hardware, Robotic Perception, planning to move, planning uncertain movements, Moving, Robotic software architectures, application domains

Philosophical foundations: Weak AI, Strong AI, Ethics and Risks of AI, Agent Components, Agent Architectures, Are we going in the right direction, What if AI does succeed.

Textbooks:

1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, Pearson Education, 2019.

Reference Books:

- 1. Nilsson, Nils J., and Nils Johan Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.
- 2. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting

Lecture 9Hrs

Lecture 8 Hrs

Lecture 10Hrs

Lecture 9 Hrs

Education 27.1 (2009): 30-39.

Online Learning Resources: http://peterindia.net/AILinks.html http://nptel.ac.in/courses/106106139/ https://nptel.ac.in/courses/106/105/106105152/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.TechCSE(DS)- III-I Sem

L T P C 3 0 0 3

(20A32502) FOUNDATIONS OF DATA ANALYTICS

Course Objectives:

- Discuss various jobs related to Data Science
- Understand MapReduce
- Study Bigdata patterns

Course Outcomes:

- Analyze data, test claims, and draw valid conclusions using appropriate statistical methodology
- Use various tools related to Big data
- Obtain training to secure a job

UNIT I Introduction Lecture 8Hrs

What is Analytics, What is Big Data, Characteristics of Big data, Domain specific examples of big data, Analytics flow for big data, Big data stack, Mapping analytics flow to big data stack, case studies: Genome and Weather data analysis, Analytics patterns

UNIT IISetting up Big data stack and Big data PatternsLecture 8HrsHortonworks data platform, Cloudera CDH stack, Amazon Elastic MapReduce, Azure HDInsight,
Analytics architecture components and Design stylesAutomatics

UNIT III MapReduce, NoSQL Lecture 10Hrs MapReduce patterns, Key-Value Databases, Document Databases, Column Family Databases, Graph databases.

UNIT IV Serving databases and Web Frameworks, Big Data Jobs Lecture10 Hrs Relational databases, Non-Relational Databases, Python web application framework – Django, Case study: Django application for viewing weather data, The big picture of Bigdata jobs

UNIT V Simulation, Monte Carlo integration & Variance reduction Lecture 8 Hrs Seeing yourself in a big data job, looking into big data platform, Big data jobs for business analytics, big data jobs for data scientists, big data jobs for software developers.

Textbooks:

- 1. ArshdeepBahga, Vijay Madisetti, Big Data Science and Analytics: A Hands of Approach, Self Published: www.hands-on-books-series.com.
- 2. Jason Williamson, Big Data job for Dummies, Willey, 2015

Reference Books:

- 1. Exploratory Data Analysis with R Roger D. Peng, Lean pub publications, 2015
- 2. The Art of Data Science- A Guide for anyone Who Works with Data Roger D. Peng and Elizabeth Matsui, Lean pub Publications, 2014

Online Learning Resources:

- 1. <u>https://www.mastersindatascience.org/learning/what-is-data-analytics/</u>
- 2. https://www.techtarget.com/searchdatamanagement/definition/data-analytics
- 3. https://www.lotame.com/what-is-data-analytics/
- 4. https://www.oracle.com/business-analytics/data-analytics/

3 0 0 3

(20A12701a) ADVANCED DATABASES (Professional Elective Course-I)

Course Objectives:

- To study the needs of different databases.
- To understand about different data models that can be used for these databases.
- To make the students get familiarized with transaction management of the database

Course Outcomes:

- Design, develop and implement a mid-scale relational database for an application domain using a commercial-grade RDBMS.
- Identify and resolve physical database design and implementation issues.
- Use the persistence framework of a chosen language to perform Object Relational Mapping.
- To provide an introductory concept about the way in which data can be stored in geographical information systems etc., to develop in-depth knowledge about web and intelligent database

UNIT I **Distributed Databases** Lecture 8Hrs Distributed DBMS Concepts Design Introduction and Functions and Architecture of DDBMS – Distributed Relational Database Design – Transparency in DDBMS - Distributed Transaction Management - Concurrency control - Deadlock Management -Database recovery - The X/Open Distributed Transaction Processing Model - Replication servers -Distributed Query Optimization - Distribution and Replication in Oracle.

UNIT II Object Oriented Databases Lecture 8Hrs Object Oriented Databases - Introduction - Weakness of RDBMS - Object Oriented Concepts Storing Objects in Relational Databases – Next Generation Database Systems – Object Oriented Data models - OODBMS Perspectives - Persistence - Issues in OODBMS - Object Oriented Database Management System Manifesto – Advantages and Disadvantages of OODBMS – Object Oriented Database Design - OODBMS Standards and Systems - Object Management Group - Object Database Standard ODMG - Object Relational DBMS - Postgres - Comparison of ORDBMS and OODBMS.

UNIT III Web Databases Lecture 9Hrs Web Technology and DBMS - Introduction - The Web - The Web as a Database Application Platform - Scripting languages - Common Gateway Interface - HTTP Cookies - Extending the Web Server - Java - Microsoft's Web Solution Platform - Oracle Internet Platform - Semi structured Data and XML - XML Related Technologies - XML Query Languages

UNIT IV Data Warehousing Concepts Data Warehousing Concept: Introduction to Data Warehousing, Data Warehouse Architecture, Data Warehousing Tools and Technologies, Data Mart, Data Warehousing and Temporal Databases, Data Warehousing Using Oracle

Data Warehousing Design: Designing a Data Warehouse Database, Data Warehouse Development Methodologies, Kimball's Business Dimensional Lifecycle, Dimensionality Modeling, The Dimensional Modeling Stage of Kimball's, Data Warehouse Development Issues, Data Warehousing Design Using Oracle

UNIT V **OLAP&Data Mining**

OLAP: Online Analytical Processing, OLAP Applications, Multidimensional Data Model, OLAP Tools, OLAP Extensions to the SQL Standard, Oracle OLAP

Data Mining: Data Mining Techniques, The Data Mining Process, Data Mining Tools, Data Mining and Data Warehousing, Data Mining (ODM)

Lecture 9Hrs

Lecture 9Hrs

Textbooks:

1. Thomas M. Connolly, Carolyn E. Begg, "Database Systems - A Practical Approach to Design, Implementation, and Management", Third Edition, Pearson Education, 2003.

Reference Books:

1.RamezElmasri&ShamkantB.Navathe, "Fundamentals of Database Systems", Fourth Edition, Pearson Education, 2004.

2. M.TamerOzsu , Patrick Ualduriel, "Principles of Distributed Database Systems", Second Edition, PearsonEducation, 2003.

3. C.S.R. Prabhu, "Object Oriented Database Systems", PHI, 2003.

4. Peter Rob and Corlos Coronel, "Database Systems - Design, Implementation and

Management", Thompson Learning, Course Technology, 5th Edition, 2003.

Online Learning Resources:

1. Advanced Database Queries | edX

3 0 0 3

(20A12701a) DATA WAREHOUSINGAND MINING **Common to IT, CSE(DS)**

Course Objectives:

The course is designed

- To familiarize with mathematical foundations of data mining tools.
- To introduce classical models and algorithms in data warehouses and data mining. •
- To investigate the kinds of patterns that can be discovered by association rule mining, classification and clustering.
- To explore data mining techniques in various applications like social, scientific and • environmental context.

Course Outcomes:

After completion of the course, students will be able to

- Design a Data warehouse system and perform business analysis with OLAP tools
- Apply suitable pre-processing and visualization techniques for data analysis
- Apply frequent pattern and association rule mining techniques for data analysis •
- Design appropriate classification and clustering techniques for data analysis •
- Infer knowledge from raw data

Warehousing and Online Analytical Processing Lecture 8Hrs UNIT I Basic Concepts - Data Warehousing Components - Building a Data Warehouse - Database Architectures for Parallel Processing - Parallel DBMS Vendors - Multidimensional Data Model -Data Warehouse Schemas for Decision Support, Concept Hierarchies -Characteristics of OLAP Systems – Typical OLAP Operations, OLAP and OLTP.

UNIT II **Data Mining and Data Preprocessing** Lecture 10Hrs Introduction to Data Mining Systems – Knowledge Discovery Process – Data Mining Techniques - Issues - applications- Data Objects and attribute types, Statistical description of data, Data Preprocessing - Cleaning, Integration, Reduction, Transformation and discretization, Data Visualization, Data similarity and dissimilarity measures.

UNIT III Associations and Classification Lecture 8Hrs Mining Frequent Patterns, Associations and Correlations – Mining Methods- Pattern Evaluation Method - Pattern Mining in Multilevel, Multi-Dimensional Space - Constraint Based Frequent Pattern Mining, Classification using Frequent Patterns.

UNIT IV **Cluster Analysis**

Decision Tree Induction - Bayesian Classification - Rule Based Classification - Classification by Back Propagation - Support Vector Machines - Lazy Learners - Model Evaluation and Selection-Techniques to improve Classification Accuracy. Clustering Techniques - Cluster Analysis-Partitioning Methods - Hierarchical Methods - Density Based Methods - Grid Based Methods - Evaluation of clustering - Clustering high dimensional data- Clustering with constraints, Outlier analysis-outlier detection methods.

UNIT V Weka Tool

Datasets - Introduction, Iris plants database, Breast cancer database, Auto imports database -Introduction to WEKA, The Explorer - Getting started, Exploring the explorer, Learning algorithms, Clustering algorithms, Association-rule learners.

Textbooks:

1. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, Elsevier, Third Edition, 2013.

Lecture 9Hrs

Lecture 8Hrs

2. Introduction to Data Mining – Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson education.

Reference Books:

- 1. Alex Berson and Stephen J.Smith, —Data Warehousing, Data Mining & OLAPI, Tata McGraw Hill Edition, 35th Reprint 2016.
- 2. K.P. Soman, Shyam Diwakar and V. Ajay, —Insight into Data Mining Theory and Practice, Eastern Economy Edition, Prentice Hall of India, 2006.
- 3. Ian H.Witten and Eibe Frank, —Data Mining: Practical Machine Learning Tools and Techniques, Elsevier, Second Edition.

Online Learning Resources:

- 1. <u>https://www.coursera.org/courses?query=data%20warehouse</u>
- 2. https://www.edx.org/learn/data-warehouse

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.TechCSE(DS)- III-I Sem

(20A05302T) OBJECT ORIENTED PROGRAMMING THROUGH JAVA Common to CSE, IT, CSD, CSE (AI), CSE (AI & ML), CSE(DS), AI& DS)

Pre-requisite Fundamental Programming

Course Objectives:

- To understand object oriented concepts and problem solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

Course Outcomes (CO):

After completion of the course, students will be able to

- Solve real-world problems using OOP techniques.
- Apply code reusability through inheritance, packages and interfaces •
- Solve problems using java collection framework and I/O classes. •
- Develop applications by using parallel streams for better performance. •
- Develop applets for web applications.
- Build GUIs and handle events generated by user interactions. •
- Use the JDBC API to access the database •

UNIT - I Introduction

Introduction: Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods.

UNIT - II **Inheritance, Packages, Interfaces**

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

Exception handling, Stream based I/O (java.io) UNIT - III

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built-in exceptions, creating own exception subclasses.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and Writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

UNIT - IV Multithreading, The Collections Framework (java.util) 8Hrs

Multithreading: The Java thread model, Creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

UNIT – V Applet, GUI Programming with Swings, Accessing Databases with JDBC 8Hrs

8Hrs

9Hrs

9Hrs

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, showmessagedialog, showconfirmdialog, showinputdialog, showoptiondialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Textbooks:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Java How to Program, 10th Edition, Paul Dietel, Harvey Dietel, Pearson Education.

Reference Books:

- 1. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.
- 2. Core Java Volume 1 Fundamentals, Cay S. Horstmann, Pearson Education.
- 3. Java Programming for core and advanced learners, Sagayaraj, Dennis, Karthik andGajalakshmi, University Press
- 4. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 5. Object Oriented Programming through Java, P. Radha Krishna, University Press.
- 6. Programming in Java, S. Malhotra, S. Chaudhary, 2nd edition, Oxford Univ. Press.
- 7. Java Programming and Object-oriented Application Development, R.A. Johnson, Cengage Learning.

Online Learning Resources:

https://www.w3schools.com/java/java_oop.asp http://peterindia.net/JavaFiles.html

0 0 3 1.5

(20A32501P) DATA MANAGEMENT TECHNIQUES LAB

Course Objectives:

- To understand data definition and data manipulation commands.
- To understand functions, procedures and procedural extensions of data bases
- To get familiar with the use of a front-end tool
- To understand design and implementation of typical database applications

Course Outcomes:

Upon completion of the course, the students will be able to:

- Use typical data definitions and manipulation commands.
- Design applications to test Nested and Join Queries
- Implement simple applications that use Views
- Implement applications that require a Front-end Tool
- Critically analyze the use of Tables, Views, Functions and Procedures

List of Experiments:

1.Perform the following database administrator tasks

- Install the database software of your choice
- Plan the database of your organization
- Create and open the database
- Backup the database
- Enroll system users
- Implement the Database design
- Backup the fully functional database
- Tune database performance
- Download and install patches
- Rollout to additional hosts
- Starting up and shutting down a database
- Altering database availability
- Configure database memory manually and automatically
- Monitor errors and alerts
- Monitor performance
- Collect statistics on tables
- Alter the tables
- Creating, altering, dropping indexes
- Create, alter, using and dropping views
- 1. Experiment with the following
 - Common number functions
 - Common string functions
 - Common data and time functions
 - Conversion functions
- 2. Perform inner join, left join, right join, full join
- 3. Perform the following
 - Data import and export with Oracle, SQL Server, MYSQL
 - Create a stored procedure with parameters in Oracle, SQL Server, MYSQL
- 4. Create a database for the State Government considering different departments and functions of

the state government

- Design the database
- Represent using ER model
- Apply Normalization up to BCNF
- Implement the database using DBMS of your choice
- Design user interfaces for performing different operations. You can do it with the feature of the DBMS or use language like Python and JAVA
- Perform the operations
- Generate appropriate reports using the data and aggregate functions

References:

- 1. Oracle Database Administrators guide, 11g release, 2010
- 2. Preston Zhang, Practical Guide to Oracle SQK, T-SQL, and MYSQL, CRC Press
- 3. <u>Use Data Management Tools & Guides Research Data Management Basics InfoGuides at</u> <u>George Mason University (gmu.edu)</u>
- 4. RafatSarosh, MecheleGruhn, SQL Server Interview Questions
- 5. Peter Rob, Carlos Coronel, Database systems design, implementation and management, Thomson Course technology

Online Learning Resources/Virtual Labs:

1. Lab Data Management & Analysis Software | Thermo Fisher Scientific - IN

0 0 3 1.5

(20A05502P) ARTIFICIAL INTELLIGENCE LAB COMMON TO CSE,IT,CSD, CSE (DS)

Course Objectives:

- To teach the methods of implementing algorithms using artificial intelligence techniques
- To illustrate search algorithms

To demonstrate the building of intelligent agents

Course Outcomes:

After completion of the course, students will be able to

- Implement search algorithms
 - Solve Artificial intelligence problems
- Design chatbot and virtual assistant

List of Experiments:

1. Write a program to implement DFS and BFS

- 2. Write a Program to find the solution for traveling salesman Problem
- 3. Write a program to implement Simulated Annealing Algorithm
- 4. Write a program to find the solution for the wumpus world problem
- 5. Write a program to implement 8 puzzle problem
- 6. Write a program to implement Towers of Hanoi problem
- 7. Write a program to implement A* Algorithm
- 8. Write a program to implement Hill Climbing Algorithm
- 9. Build a Chatbot using AWS Lex, Pandora bots.
- 10. Build a bot that provides all the information related to your college.
- 11. Build a virtual assistant for Wikipedia using Wolfram Alpha and Python
- 12. The following is a function that counts the number of times a string occurs in another string:

Count the number of times string s1 is found in string s2

Def count substring(s1,s2): count = 0

```
for i in range(0,len(s2)-len(s1)+1):
if s1 == s2[i:i+len(s1)]:
```

 $\operatorname{count} += 1$

```
return count
```

For instance, countsubstring('ab', 'cabalaba') returns 2.

Write a recursive version of the above function. To get the rest of a string (i.e. everything but the first character).

13. Higher order functions. Write a higher-order function count that counts the number of elements in a list that satisfy a given test. For instance: count (lambda x: x>2, [1, 2, 3, 4, 5]) should return 3, as there are three elements in the list larger than 2. Solve this task without using any existing higher-order function.

14. Brute force solution to the Knapsack problem. Write a function that allows you to generate random problem instances for the knapsack program. This function should generate a list of items containing N items that each have a unique name, a random size in the range $1 \dots 5$ and a random value in the range $1 \dots 10$.

Next, you should perform performance measurements to see how long the given knapsack solver take to solve different problem sizes. You should perform at least 10 runs with different randomly generated problem instances for the problem sizes 10,12,14,16,18,20 and 22. Use a backpack size of 2:5 x N for each value problem size N. Please note that the method used to generate random numbers can also affect performance, since different distributions of values can make the initial

conditions of the problem slightly more or less demanding.

How much longer time does it take to run this program when we increase the number of items? Does the backpack size affect the answer?

Try running the above tests again with a backpack size of 1 x N and with 4:0 x N.

15. Assume that you are organising a party for N people and have been given a list L of people who, for social reasons, should not sit at the same table. Furthermore, assume that you have C tables (that are infinitely large).

Write a function layout (N,C,L) that can give a table placement (i.e. a number from 0 : : :C -1) for each guest such that there will be no social mishaps.

For simplicity we assume that you have a unique number $0 \dots N-1$ for each guest and that the list of restrictions is of the form $[(X, Y) \dots]$ denoting guests X, Y that are not allowed to sit together. Answer with a dictionary mapping each guest into a table assignment, if there are no possible layouts of the guests you should answer False.

References:

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998.
- 4. Artificial Neural Networks, B. Yagna Narayana, PHI
- 5. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight, TMH.
- 6. Artificial Intelligence and Expert Systems, Patterson, PHI.

Online Learning Resources/Virtual Labs:

https://www.tensorflow.org/ https://pytorch.org/ https://github.com/pytorch https://keras.io/ https://github.com/keras-team http://deeplearning.net/software/theano/ https://github.com/Theano/Theano https://caffe2.ai/ https://github.com/caffe2 https://deeplearning4j.org/Scikit-learn:https://scikit-learn.org/stable/ https://github.com/scikit-learn/scikit-learn https://www.deeplearning.ai/ https://opencv.org/ https://github.com/qqwweee/keras-yolo3 https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/ https://developer.nvidia.com/cuda-math-library http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/index.php

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.TechCSE(DS)– III-I Sem

L T P C 1 0 2 2

(20A32503) DIGITAL AND SOCIAL MEDIA MARKETING (Skill Oriented Course)

Pre-requisite Internet Knowledge, Acquittance with some social media Facebook, Twitter

Course Objectives:

• This course takes an in-depth look at the relationship between media and human behavior, and examines how organizations capitalize on social media, and these consumer-to-consumer interactions, to support their marketing efforts.

Course Outcomes:

After completion of the course, students will be able to

- Understand what social media is, the various channels through which it operates, and its role in marketing strategy
- Use principles of consumer and social psychology to develop social media content and campaigns that engage consumers
- Draw on knowledge about word-of-mouth marketing to develop effective approaches for propagating ideas, messages, products, and behaviors across social networks
- Measure the impact of a social media campaign in terms of a specific marketing objective

UNIT I Introduction, Search Engine optimization Lecture 9Hrs Marketing Goes Digital: Introduction, Digital isn't the only option, Non-Marketing digital marketers, Personalization, Viral Marketing, Paid, earned and owned, Content marketing, Influencers, Affiliate marketing, Attribution, Public relations and reputation management, Integrated marketing communications, Gaming, Legal Considerations, Strategic digital marketing, Digital marketing Objectives

Search Engine optimization: Introduction, How search engines work, Keyword selection, On-site optimization, Off-site optimization, Strategic search engine optimization, Third-party search engine ranking

Activity 1:(Search Engine Optimization)

Perform the following activities in relation to On Page -Search Engine Optimization.

- 1. Submit your site to Google Search Console: Take a screenshot of successful message.
- 2. Create XML Map. Submit to Google Search Console: Take a screenshot of successful message.
- 3. Install Yoast SEO Plug-in. Perform SEO Analysis. Take screenshot of the report
- 4. Perform Readability Analysis of the post that you created in Activity 1 Website Review: Part:1. Question 1 using Yoast SEO. Take a screenshot of the report
- 5. Use keyword Planner tool. Select 10 Important Keyword for your website. Takescreen shot of this list.

UNIT II Website Development

Lecture 8Hrs

Website Development: Introduction, Web presence ownership, management and development, Usability, The basics, Content development, The B2B website, The global web presence

Activity 2: Buy Domain Name and WebHosting

You need to buy a domain name and webhosting to build your own websites which is very important

to have hands-on experience with SEO and other digital marketing techniques.

UNIT III E-commerce

E-commerce: Introduction, Multi-channel retailing, Fulfilment, Comparison shopping engines, emarketplaces and third-party shopping websites, The e-commerce website **Advertising online:** Introduction, Programmatic advertising, Objectives and management, Online ad formats, Search advertising, Network advertising, Landing pages

Activity-3: (Website Review)

- 1. Crete a Website of your own
- 2. Add a new post to your website, a topic should be related to your Website.
- 3. Add a contact us form in the website (Use Contact Form 7 Plug-in).
- 4. Create Home page of your Website using Elementor Plug-in.
- 5. Add Slider to any page of your website
- 6. Create top Menu of your website

UNIT IV Email marketing

Lecture8 Hrs

Email marketing: Introduction, Email as a medium for direct marketing, Email as a medium for marketing messages, Email newsletters

Activity 4: Email Marketing

All these questions are with respect to MailChimp

- 1. Create a new Audience. Add 10 Dummy Subscribers to the audience list using any of the following methods
 - 1. Manual
 - 2. Copy Paste from the file
 - 3. CSV or tab-delimited text file
- 2. Make sure your list includes, First Name, Last name, Phone (Dummy), Tag, Address and Gender. Please also mention which method you have used. Take a screenshot of the list. Upload to your website. Send the URL of Page.
- 3. Create a signup form using "Form Builder Option". Objective should be collecting the emails for your Digital Marketing Training Institute. Share the URL of Signup form
- 4. Create an embedded form. Embed this form in any page of your website. Share the link of the page. Objective should be collecting the emails only.
- 5. Suppose you are offering Training on Digital Marketing. Create a 1 Column Full Width Template by using at least five Blocks in the template. Share the URL of that template
- 6. Select "Art Newsletter" and customize it a newsletter from digital marketing training institute. You may include the text/ message as per your wish.

Activity 5: Email Marketing

All these questions are with respect to Mail Chimp

- 1. Take the audience list. Create Two segments based on gender. Take the screenshot of each segment and Upload to your website. Send the URL of Page.
- 2. Create a group based on interest in your audience. It should be visible in Signup form. Take the screenshot and Upload to your website. Send the URL of Page.
- 3. Create a dummy campaign using mail chimp to promote Digital marketing services. Share the URLs of the Campaign. Use may use any template as per your wish.
- 4. Create a dummy 'plain text campaign' on any subject. Take a screenshot of Desktop and Mobile preview. Upload to your website. Send the URL of Page.

Lecture9 Hrs

5. Create a pop-up form for your website. Share the URL of your website.

UNIT V Marketing on Social media Lecture 9Hrs Marketing on social media: Introduction, Blogging, Consumer reviews and ratings, Social networking, Social sharing, Social media service and support, Strategic marketing on social media, Measure and monitor

Activity 6: Social Media Marketing

Assume a product. You want to advertise it. Prepare the advertisement and do the marketing on Face book.

Activity 7: Twitter and LinkedIn

Experiment with Twitter and LinkedIn

Activity 8: YouTube

All the students put together create a YouTube Chanel. Upload videos. Optimize it.

Activity 9: Logo, Banner, Video

Prepare logo, banner, and Video for assumed product/organization

Activity 10: WhatsApp

Prepare a publicity video and market it on WhatsApp

Textbooks:

1. Alan Charlesworth, "Digital Marketing: A Practical Approach", 3rd Edition, 2018

Reference Books:

- 1. Digital and Social Media Marketing: Emerging Applications and Theoretical Development, Nripendra P. Rana 2019
- 2. Digital Marketing Paperback 6 August 2020by Seema Gupta

Online Learning Resources:

1. Advanced Certificate in Digital Marketing and Communication | MICA, upGrad

3 0 0 3

(20A05602T) MACHINE LEARNING Common to CSE, IT,CSD,CSE(AI),CSE(AI&ML),CSE(DS),AI&DS,CSE(IOT)

Course Objectives:

The course is introduced for students to

- Understand basic concepts of Machine Learning
- Study different learning algorithms
- Illustrate evaluation of learning algorithms

Course Outcomes (CO):

After completion of the course, students will be able to

- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques
- Design application using machine learning techniques

UNIT – I Introduction to Machine Learning & Preparing to Model Lecture 9Hrs Introduction: What is Human Learning? Types of Human Learning, what is Machine Learning?Types of Machine Learning, Problems Not to Be Solved Using Machine Learning, Applications of Machine Learning, State-of-The-Art Languages/Tools in Machine Learning, Issues in Machine Learning

Preparing to Model: Introduction, Machine Learning Activities, Basic Types of Data in Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-Processing

UNIT – II **Modelling and Evaluation &Basics of Feature Engineering** Lecture 9Hrs Introduction, selecting a Model, training a Model (for Supervised Learning), Model Representation and Interpretability, Evaluating Performance of a Model, Improving Performance of a Model Basics of Feature Engineering: Introduction, Feature Transformation, Feature Subset Selection

UNIT – III **Bayesian Concept Learning & Supervised Learning: Classification** Lecture 10Hrs Introduction, Why Bayesian Methods are Important? Bayes' Theorem, Bayes' Theorem and Concept Learning, Bayesian Belief Network

Supervised Learning: Classification: Introduction, Example of Supervised Learning, Classification Model, Classification Learning Steps, Common Classification Algorithms-*k*-Nearest Neighbour(*k*NN), Decision tree, Random forest model, Support vector machines

UNIT – IV Supervised Learning: Regression

Lecture 10Hrs

Introduction, Example of Regression, Common Regression Algorithms-Simple linear regression, Multiple linear regression, Assumptions in Regression Analysis, Main Problems in Regression Analysis, Improving Accuracy of the Linear Regression Model, Polynomial Regression Model, Logistic Regression, Maximum Likelihood Estimation.

UNIT – V Unsupervised LearningLecture 9Hrs

Introduction, Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering – Clustering as a machine learning task, Different types of clustering techniques, Partitioning methods,

K-Medoids: a representative object-based technique, Hierarchical clustering, Density-based methods-DBSCAN

Finding Pattern using Association Rule- Definition of common terms, Association rule, Theapriori algorithm for association rule learning, Build the aprioriprinciple rules

Textbooks:

1. Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019.

Reference Books:

- 1. EthernAlpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 2. Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 1. Andreas C. Müller and Sarah Guido "Introduction to Machine Learning with Python: A Guide for Data Scientists", Oreilly.

Online Learning Resources:

- Andrew Ng, "Machine Learning Yearning"
- <u>https://www.deeplearning.ai/machine-learning-yearning/</u>
- Shai Shalev-Shwartz , Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms" , Cambridge University Press <u>https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html</u>

$\frac{1}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{3}$

(20A05701a) CLOUD COMPUTING Common to CSE,IT, CSD, CSE(AI), CSE(AI&ML), CSE(DS), AI&DS

Course Objectives:

- To explain the evolving computer model called cloud computing.
- To introduce the various levels of services that can be achieved by cloud.
- To describe the security aspects in cloud.

Course Outcomes (CO):

After completion of the course, students will be able to

- Ability to create cloud computing environment
- Ability to design applications for Cloud environment
- Design & amp; develop backup strategies for cloud data based on features.
- Use and Examine different cloud computing services.
- Apply different cloud programming model as per need.

UNIT - I Basics of Cloud computing

Lecture 8Hrs

Introduction to cloud computing: Introduction, Characteristics of cloud computing, Cloud Models, Cloud Services Examples, Cloud Based services and applications

Cloud concepts and Technologies: Virtualization, Load balancing, Scalability and Elasticity, Deployment, Replication, Monitoring, Software defined, Network function virtualization, Map Reduce, Identity and Access Management, services level Agreements, Billing.

Cloud Services and Platforms: Compute Services, Storage Services, Database Services, Application services, Content delivery services, Analytics Services, Deployment and Management Services, Identity and Access Management services, Open Source Private Cloud software.

UNIT - II Hadoop and Python

Lecture 9Hrs

Hadoop MapReduce: Apache Hadoop, Hadoop Map Reduce Job Execution, Hadoop Schedulers, Hadoop Cluster setup.

Cloud Application Design: Reference Architecture for Cloud Applications, Cloud Application Design Methodologies, Data Storage Approaches.

Python Basics: Introduction, Installing Python, Python data Types & amp; Data Structures, Control flow, Function, Modules, Packages, File handling, Date/Time Operations, Classes.

UNIT - IIIPython for Cloud computingLecture 8HrsPython for Cloud:Python for Amazon web services, Python for Google Cloud Platform, Pythonfor windows Azure, Python for MapReduce, Python packages of Interest, Python web ApplicationFrame work, Designing a RESTful web API.

Cloud Application Development in Python: Design Approaches, Image Processing APP, Document Storage App, MapReduce App, Social Media Analytics App.

UNIT - IVBig data, multimedia and TuningLecture 8HrsBig Data Analytics:Introduction, Clustering Big Data, Classification of Big data Recommendationof Systems.

Multimedia Cloud: Introduction, Case Study: Live video Streaming App, Streaming Protocols, case Study: Video Transcoding App.

Cloud Application Benchmarking and Tuning: Introduction, Workload Characteristics, Application Performance Metrics, Design Considerations for a Benchmarking Methodology, Benchmarking Tools, Deployment Prototyping, Load Testing & Bottleneck Detection case Study, Hadoop benchmarking case Study.

UNIT - VApplications and Issues in CloudLecture 9 HrsCloud Security:Introduction, CSA Cloud Security Architecture, Authentication, Authorization,Identity Access Management, Data Security, Key Management, Auditing.

Cloud for Industry, Healthcare & Education: Cloud Computing for Healthcare, Cloud

computing for Energy Systems, Cloud Computing for Transportation Systems, Cloud Computing for Manufacturing Industry, Cloud computing for Education.

Migrating into a Cloud: Introduction, Broad Approaches to migrating into the cloud, the seven–step model of migration into a cloud.

Organizational readiness and Change Management in The Cloud Age: Introduction, Basic concepts of Organizational Readiness, Drivers for changes: A frame work to comprehend the competitive environment, common change management models, change management maturity models, Organizational readiness self – assessment.

Legal Issues in Cloud Computing: Introduction, Data Privacy and security Issues, cloud contracting models, Jurisdictional issues raised by virtualization and data location, commercial and business considerations, Special Topics.

Textbooks:

1. Cloud computing A hands-on Approach By ArshdeepBahga, Vijay Madisetti, Universities Press, 2016

2. Cloud Computing Principles and Paradigms: By Raj Kumar Buyya, James Broberg, Andrzej Goscinski, Wiley, 2016

Reference Books:

- 1. Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, SThamaraiSelvi, TMH
- 2. Cloud computing A Hands-On Approach by ArshdeepBahga and Vijay Madisetti.
- 3. Cloud Computing: A Practical Approach, Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Tata McGraw Hill, rp2011.
- 4. Enterprise Cloud Computing, Gautam Shroff, Cambridge University Press, 2010.
- 5. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O 'Reilly, SPD, rp2011.
- 6. Essentials of Cloud Computing by K. Chandrasekaran. CRC Press.

Online Learning Resources:

Cloud computing - Course (nptel.ac.in)

3 0 0 3

(20A32601T) DATA VISUALIZATION

Course Objectives:

- Discuss the importance of Data Visualization
- Demonstrate story telling
- Explain the environment of Tableau

Course Outcomes:

After completion of the course, students will be able to

- Effectively present the data
- Draw insights from the data
- Use Tableau

UNIT I

Introduction, the importance of Context, Choosing and effective visual

UNIT II

Clutter is your enemy, Focus your audience's attention, Lessons in Storytelling

UNIT III

Communicating data: A step in the process, a model of communication, Three types of communication problems, six principles of communicating data. Introduction to Tableau: Using Tableau, Tableau products, Connecting to data. How much and How many: Communicating how much, communicating how many Ratios and Rates: Ratios, Rates

UNIT IV

Lecture 10 Hrs

Lecture 9 Hrs

Lecture 9 Hrs

Lecture 10 Hrs

Proportions and Percentages: Part to whole, current to historical, actual to target. Mean and Median

Variation and Uncertainty: Respecting variation, Variation over time-Control charts, Understanding uncertainty

UNIT V

Multiple Quantities: Scatterplots, Stacked Bars, Regression and Trend Lines, The Quadrant Chart Changes over time: The origin of time charts, the line chart, the dual axis line chart, the connected scatterplot, the date filed type and seasonality, the timeline, the slopegraph Maps and Location: One special map, circle maps, filled maps, dual encoded maps.

Textbooks:

- 1. Cole NussbaumerKnaflic, Storytelling with data, Wiley
- 2. Ben Jones, Communicating Data with Tableau, O'Reilly

Reference Books:

- 1. A Julie Steele and Noah Iliinsky, Designing Data Visualizations: Representing Informational Relationships, O'Reilly.
- 2. Andy Kirk, Data Visualization: A Successful Design Process, PAKT.
- 3. Scott Murray, Interactive Data Visualization for Web, O'Reilly.

Online Learning Resources:

- 1. Data Analysis and Visualization Foundations | Coursera
- 2. Data Visualization | Coursera

Lecture 8 Hrs

(20A32602a) PREDICTIVE ANALYTICS (Professional Elective Course-II)

Course Objectives:

- Discuss the concept Predictive Analytics
- Illustrate the uses and applications of Predictive Analytics
- Demonstrate building of Predictive Analytics models

Course Outcomes:

- Visualize and explore data to better understand relationships among variables
- Understand how ensemble models improve predictions
- Organize the predictive modelling task and data flow
- Apply predictive models to generate predictions for new data
- Choose and implement appropriate performance measures for predictive models

Lecture 10 Hrs

Overview of Predictive Analytics: What Is Analytics? What Is Predictive Analytics? Business Intelligence Predictive Analytics vs. Business Intelligence, Predictive Analytics vs. Statistics, Predictive Analytics vs. Data Mining, Who Uses Predictive Analytics? , Challenges in Using Predictive Analytics, What Educational Background Is Needed to Become a Predictive Modeler? **Setting Up the Problem:** Predictive Analytics Processing Steps: CRISP-DM, Business Understanding, Defining Data for Predictive Modelling, Defining the Target Variable, Defining Measures of Success for Predictive Models, Doing Predictive Modelling Out of Order, Case study-Recovering Lapsed Donors, Fraud Detection

UNIT II

UNIT I

Lecture 8 Hrs

Data Understanding: What the Data Looks Like, Single Variable Summaries, Data Visualization in One Dimension, Histograms, Multiple Variable Summaries, Data Visualization, Two or Higher Dimensions, The Value of Statistical Significance, Pulling It All Together into a Data Audit. **Data Preparation:** Variable Cleaning, Feature Creation.

UNIT III

Lecture 9 Hrs Bow the Data Is Organiz

Itemsets and Association Rules: Terminology, Parameter Settings, How the Data Is Organized, Measures of Interesting Rules, Deploying Association Rules, Problems with Association Rules, Building Classification Rules from Association Rules.

Descriptive Modelling: Data Preparation Issues with Descriptive Modelling, Principal Component Analysis, Clustering Algorithms.

Interpreting Descriptive Models: Standard Cluster Model Interpretation.

UNIT IV

Lecture 9 Hrs

Predictive Modelling: Decision Trees, Logistic Regression, Neural Networks, K-Nearest Neighbour, Naïve Bayes, Regression Models, Linear Regression, Other Regression Algorithms. **Assessing Predictive Models:** Batch Approach to Model Assessment, Assessing Regression Models.

UNIT V

Lecture 10 Hrs

Model Ensembles: Motivation for Ensembles, Bagging, Boosting, Improvements to Bagging and Boosting, Model Ensembles and Occam's Razor, Interpreting Model Ensembles.

Text Mining: Motivation for Text Mining, A Predictive Modelling Approach to Text Mining, structured vs. Unstructured Data, Why Text Mining Is Hard, Data Preparation Steps, Text Mining Features, Modelling with Text Mining Features, Regular Expressions.

Model Deployment: General Deployment Considerations.

Case Studies: Survey Analysis Case Study, Help Desk Case Study.

Textbooks:

1. Dean Abbott, Applied Predictive Analytics, Published by Jhon Wiley & Sons, Inc, 2014.

Reference Books:

- 1. Eric Siegel, Predictive Analytics, Published by Jhon Wiley & Sons, inc, 2013.
- 2. Data Analytics using Python Kindle Editionby Bharti Motwani, 2020.

Online Learning Resources:

1. Predictive Analytics: Introduction to Business Forecasting | Udemy

3 0 0 3

(20A05603T) INTERNET OF THINGS Common to CSE, IT, CSD, CSE(AI), CSE(DS), AI&DS **PROFESSIONAL ELECTIVE COURSE - II**

Course Objectives:

- Understand the basics of Internet of Things and protocols.
- Discuss the requirement of IoT technology
- Introduce some of the application areas where IoT can be applied.
- Understand the vision of IoT from a global perspective, understand its applications, determine its market perspective using gateways, devices and data management

Course Outcomes:

After completion of the course, students will be able to

- Understand general concepts of Internet of Things.
- Apply design concept to IoT solutions
- Analyze various M2M and IoT architectures
- Evaluate design issues in IoT applications
- Create IoT solutions using sensors, actuators and Devices

UNIT I **Introduction to IoT**

Definition and Characteristics of IoT, physical design of IoT, IoT protocols, IoT communication models, IoT Communication APIs, Communication protocols, Embedded Systems, IoT Levels and Templates

UNIT II Prototyping IoT Objects using Microprocessor/Microcontroller Lecture 9Hrs Working principles of sensors and actuators, setting up the board – Programming for IoT, Reading from Sensors, Communication: communication through Bluetooth, Wi-Fi.

UNIT III **IoT Architecture and Protocols**

Lecture 8Hrs Architecture Reference Model- Introduction, Reference Model and architecture, IoT reference Model, Protocols- 6LowPAN, RPL, CoAP, MQTT, IoT frameworks- Thing Speak.

UNIT IV Device Discovery and Cloud Services for IoT

Device discovery capabilities- Registering a device, Deregister a device, Introduction to Cloud Storage models and communication APIs Web-Server, Web server for IoT.

UNIT V **UAV IoT**

Introduction toUnmanned Aerial Vehicles/Drones, Drone Types, Applications: Defense, Civil, Environmental Monitoring; UAV elements and sensors- Arms, motors, Electronic Speed Controller(ESC), GPS, IMU, Ultra sonic sensors; UAV Software -Arudpilot, Mission Planner, Internet of Drones(IoD)- Case study FlytBase.

Textbooks:

- 1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014.
- 2. Handbook of unmanned aerial vehicles, K Valavanis; George J Vachtsevanos, New York, Springer, Boston, Massachusetts : Credo Reference, 2014. 2016.

Reference Books:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

Lecture 8Hrs

Lecture 8Hrs

Lecture 10Hrs

- 2. ArshdeepBahga, Vijay Madisetti Internet of Things: A Hands-On Approach, Universities Press, 2014.
- 3. The Internet of Things, Enabling technologies and use cases Pethuru Raj, Anupama C. Raman, CRC Press.
- 4. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- 5. Cuno Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493- 9357-1
- 6. DGCA RPAS Guidance Manual, Revision 3 2020
- 7. Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs, John Baichtal

Online Learning Resources:

- 1. https://www.arduino.cc/
- 2. https://www.raspberrypi.org/
- 3. https://nptel.ac.in/courses/106105166/5
- 4. https://nptel.ac.in/courses/108108098/4

3 0 0 3

Lecture 9Hrs

Lecture 8Hrs

(20A12602a) COMPUTER GRAPHICS (Professional Elective-II)

Course Objectives:

- To familiarize with the use of the components of a graphics system.
- To learn how to draw the line, circle etc., from preliminary element (pixel).
- To learn the basic principles of 3-dimensional computer graphics.
- To provide an understanding of how to scan convert the basic geometrical primitives and how to transform the shapes to fit them as per the picture definition.
- To provide an understanding of mapping from a world coordinate to device coordinates, clipping, and projections.
- To be able to apply computer graphics concepts in the development of computer games, information visualization, and in business applications.

Course Outcomes:

After completion of the course, students will be able to

- Explain the basic concepts used in computer graphics.
- Inspect various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping.
- Assess the importance of viewing and projections.
- Define the fundamentals of animation, virtual reality and its related technologies.
- Analyze the typical graphics pipeline.

UNIT IOverview of computer graphics system Lecture 8Hrs Overview of Computer Graphics System – Video display devices – Raster Scan and randomscan system – Input devices – Hard copy devices.

UNIT IIOutput primitives and attributes

Drawing line, circle and ellipse generating algorithms – Scan line algorithm – CharacterGeneration – attributes of lines, curves and characters – Antialiasing.

UNIT IIITwo-dimensional graphics Transformations and viewing Lecture 9Hrs Two-dimensional Geometric Transformations – Windowing and Clipping – Clipping of lines and Clipping of polygons.

UNIT IVThree-dimensional graphics and viewing Three-dimensional concepts – Object representations- Polygon table, Quadric surfaces, Splines, Bezier curves and surfaces – Geometric and Modelling transformations – Viewing -Parallel and perspective projections.

UNIT VRemoval of hidden surfaces

Visible Surface Detection Methods – Computer Animation.

Textbooks:

1. Hearn, D. and Pauline Baker, M., Computer Graphics (C-Version), 2nd Edition, Pearson Education.

Reference Books:

- 1. Neuman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, McGraw Hill., 1979.
- 2. Roger, D.F., Procedural elements for Computer Graphics, Mc Graw Hill, 1985.

- 3. Asthana, R.G.S and Sinha, N.K., Computer Graphics, New Age Int. Pub., 1996.
- 4. Floey, J.D., Van Dam, A, Feiner, S.K. and Hughes, J.F, Computer Graphics, PearsonEducation, 2001.

Online Learning Resources:

- 1. <u>http://math.hws.edu/eck/cs424/downloads/graphicsbook-linked.pdf</u>
- 2. <u>https://nptel.ac.in/courses/106/106/106106090/</u>

0 0 3 1.5

(20A05602P) MACHINE LEARNING LAB Common to CSE, CSD,CSE(AI),CSE(AI&ML),CSE(DS),AI&DS

Course Objectives:

- Make use of Data sets in implementing the machine learning algorithms
- Implement the machine learning concepts and algorithms in any suitable language of choice.

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand the Mathematical and statistical prospectives of machine learning algorithms through python programming
- Appreciate the importance of visualization in the data analytics solution.
- Derive insights using Machine learning algorithms

List of Experiments:

Note:

- a. The programs can be implemented in either JAVA or Python.
- b. For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python.
- c. Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.
- 1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
- 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 4. Build an Artificial Neural Network by implementing the Back-propagation algorithm and test the same using appropriate data sets.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Projects

- 1. Predicting the Sale price of a house using Linear regression
- 2. Spam classification using Naïve Bayes algorithm
- 3. Predict car sale prices using Artificial Neural Networks
- 4. Predict Stock market trends using LSTM
- 5. Detecting faces from images

References:

1. Python Machine Learning Workbook for beginners, AI Publishing, 2020.

Online Learning Resources/Virtual Labs:

- 1) Machine Learning A-Z (Python & R in Data Science Course) | Udemy
- 2) <u>Machine Learning | Coursera</u>

(20A32601P) DATA VISUALIZATION LAB

Course Objectives:

- Discuss concepts and principles of data visualization particularly related to decision making.
- Investigate technologies and practices for visualizing data as part of a data management and analytics system.
- Apply user interface design principles and practices to develop interactive data visualizations.
- Design effective dashboard for decision making at various levels.
- Conduct research on relevant data visualization topics.

Course Outcomes:

At the end of the course students will be able to:

- Understand and describe the main concepts of data visualization
- Publish the created visualizations to Tableau Server and Tableau Public
- How to recognize good (and bad) data visualizations, how to interpret a data visualization, and Using shapes, colors, text and layout appropriately
- Identifying stories and insights in data, preparing data for visualization, and create several different charts using Tableau.

List of Experiments:

- 1. Connecting to the data
- 2. Formatting and insertion of data
- 3. Creating worksheets, navigating the sheets, applying filters, aggregating the data
- 4. Organize the data into dashboards
- 5. Create story
- 6. Develop interactive plots in Python
- 7. Create Time series Data Visualization in Python
- 8. Visualization of Semi-Structured data
- 9. Create Sales Growth Dashboard for the tracking of sales teams progress
- 10. Design Social media Dashboard find how well your sponsored social activating are performing, monitor your PPC campaigns
- 11. Develop Healthcare Data Dashboard Allows hospital administrators to manage and identify patient hazards from a single screen.

References:

- 1. Andy Kirk, Data Visualization A Handbook for Data Driven Design, Sage Publications, 2016
- 2. Philipp K. Janert, Gnuplot in Action, Understanding Data with Graphs, Manning Publications, 2010

Online Learning Resources/Virtual Labs:

1. Data Visualization with Tableau | Coursera

0 0 3 1.5

(20A12604P) CLOUD COMPUTING LAB Common to IT, CSE(AI), CSE(AI&ML), CSE(DS), AI&DS

Course Objectives:

- Demonstrate application development using Cloud
- Explain features of Hadoop

Course Outcomes (CO):

On completion of this course, the students will be able to:

- Configure various virtualization tools such as Virtual Box, VMware workstation.
- Design and deploy a web application in a PaaS environment.
- Learn how to simulate a cloud environment to implement new schedulers.
- Install and use a generic cloud environment that can be used as a private cloud.
- Manipulate large data sets in a parallel environment.

List of Experiments:

- 1. Install VirtualBox/VMware Workstation with different flavours of Linux or windows OS on top of windows operating systems.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install Google App Engine. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 7. Find a procedure to launch virtual machine using try stack (Online Open stack Demo Version)
- 8. Install Hadoop single node cluster and run simple applications like wordcount
- 9. Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it.
- 10. Develop a Guestbook Application using Google App Engine
- 11. Develop a Serverless Web App using AWS
- 12. Design a Content Recommendation system using AWS
- 13. Design a Cloud based smart traffic management system
- 14. Design Cloud based attendance management system
- 15. Design E-learning cloud-based system
- 16. Using Amazon Lex build a Chatbot

References:

- 1. https://www.vmware.com/products/workstation-pro/workstation-pro-evaluation.html.
- 2. http://code.google.com/appengine/downloads.html
- 3. http://code.google.com/appengine/downloads.html

Online Learning Resources/Virtual Labs:

1. Google Cloud Computing Foundations Course - Course (nptel.ac.in)

L T P C 1 0 2 2

(20A52401) SOFT SKILLS

Course Objectives:

- To encourage all round development of the students by focusing on soft skills
- To make the students aware of critical thinking and problem-solving skills
- To develop leadership skills and organizational skills through group activities
- To function effectively with heterogeneous teams

Course Outcomes:

By the end of the program students should be able to

- Memorize various elements of effective communicative skills
- Interpret people at the emotional level through emotional intelligence
- apply critical thinking skills in problem solving
- analyse the needs of an organization for team building
- Judge the situation and take necessary decisions as a leader
- Develop social and work-life skills as well as personal and emotional well-being

Soft Skills & Communication Skills

10Hrs

10Hrs

Introduction, meaning, significance of soft skills – definition, significance, types of communication skills - Intrapersonal & Inter-personal skills - Verbal and Non-verbal Communication

Activities:

UNIT – I

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self- expression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincingnegotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non-verbal clues and remedy the lapses on observation

Critical Thinking

Active Listening – Observation – Curiosity – Introspection – Analytical Thinking – Open-mindedness – Creative Thinking

Activities:

UNIT – II

Gathering information and statistics on a topic - sequencing – assorting – reasoning – critiquing issues – placing the problem – finding the root cause - seeking viable solution – judging with rationale – evaluating the views of others - Case Study, Story Analysis

UNIT – III Problem Solving & Decision Making 10Hrs

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Methods of decision making – Effective decision making in teams – Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision. Case Study & Group Discussion

UNIT – IV Emotional Intelligence & Stress Management

10Hrs

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations. Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT – V

Leadership Skills

10Hrs

Team-Building – Decision-Making – Accountability – Planning – Public Speaking – Motivation – Risk-Taking - Team Building - Time Management

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice – sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership – Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra BarunK.)Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- 2. Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr Shikha Kapoor</u>Publisher : I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- 1. Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- **3.** Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: Notion Press
- 6. Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. <u>https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q</u>
- 2. https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hD171U
- 4. https://youtu.be/gkLsn4ddmTs
- 5. https://youtu.be/2bf9K2rRWwo
- 6. <u>https://youtu.be/FchfE3c2jzc</u>

(20A99601) INTELLECTUAL PROPERTY RIGHTS AND PATENTS (Mandatory Non-Credit Course)

Course Objectives:

This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws, Cyber Laws, Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations

Course Outcomes:

- Understand IPR law & Cyber law
- Discuss registration process, maintenance and litigations associated with trademarks
- Illustrate the copy right law
- Enumerate the trade secret law.

UNIT I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics – Types of Intellectual Property – Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement – Regulatory – Overuse or Misuse of Intellectual Property Rights – Compliance and Liability Issues.

UNIT II

Introduction to Copyright – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

UNIT III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

UNIT IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

UNIT V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law. Introduction to Cyber Law – Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

Textbooks:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections

References:

- 1. Prabhuddha Ganguli: ' Intellectual Property Rights'' Tata Mc-Graw Hill, New Delhi
- 2. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- 4. M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub.
3 0 0 3

(20A05705a) CYBER SECURITY **Common to IT, CSE(DS), CSE(IOT)** (Professional Elective course - III)

Course Objectives:

The course is designed to provide awareness on different cyber crimes, cyber offenses, tools and methods used in cyber crime.

Course Outcomes:

After completion of the course, students will be able to

- Classify the cyber crimes and understand the Indian ITA 2000
- Analyse the vulnerabilities in any computing system and find the solutions •
- Predict the security threats of the future •
- Investigate the protection mechanisms •
- Design security solutions for organizations

UNIT I **Introduction to Cybercrime**

Introduction, Cybercrime, and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, And Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

UNIT II **Cyber Offenses: How Criminals Plan Them** Lecture 9Hrs Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing

UNIT III **Cybercrime: Mobile and Wireless Devices** Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in

Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies an Measures in Mobile Computing Era, Laptops.

UNIT IV **Tools and Methods Used in Cybercrime** Lecture 8Hrs Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horse and Backdoors, Steganography, DoS and DDoS attacks, SQL Injection, Buffer Overflow.

UNIT V **Cyber Security: Organizational Implications**

Introduction, Cost of Cybercrimes and IPR issues, Web threats for Organizations, Security and Privacy Implications, Social media marketing: Security Risks and Perils for Organizations, Social Computing and the associated challenges for Organizations.

Textbooks:

1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA.

Reference Books:

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security ,Chwan-Hwa(john) Wu,J.DavidIrwin.CRC Press T&F Group Online Learning Resources:

http://nptel.ac.in/courses/106105031/40 http://nptel.ac.in/courses/106105031/39 http://nptel.ac.in/courses/106105031/38

Lecture 8Hrs

Lecture 9Hrs

Lecture 8Hrs

3 0 0 3

(20A32701a) USER INTERFACE DESIGN (Professional Elective Course- III)

Course Objectives:

- Understand what user experience (UX) means and how it matters
- Understand how to approach UX and usability
- Understand how to approach UI design

Course Outcomes:

After completion of the course, students will be able to

- Understand Importance and Characteristics of User interface design
- Understand User Interface Design process AND Business functions
- Apply System menus, navigation schemes and windows characteristics
- Understand screen-based controls and device-based controls
- Design the prototypes and test plans of user interface

UNIT I

The Importance of User Interface: Defining the User Interface, The Importance Of Good Design, The Benefits of Good Design, A Brief History of The Human-Computer Interface-Introduction of The Graphical User Interface, The Blossoming of The World Wide Web, A Brief History of Screen Design

Characteristics of Graphical and Web User Interfaces: The Graphical User Interface, The Web User Interface, Principles of User Interface Design.

UNIT II

Lecture 9Hrs

The User Interface Design Process: Obstacles and Pitfalls in the Development Path, Usability, The Design Team

Know Your User or Client: Understanding How People Interact with Computers,

Important Human Characteristics in Design, Perception, Memory, Sensory Storage, Visual Acuity, Human Considerations in Design-The User's Knowledge and Experience, The User's Tasks and Needs, The User's Psychological Characteristics, The User's Physical Characteristics, Human Interaction Speeds.

UNIT III

Understand the Business Function: Business Definition and Requirements Analysis, Determining Basic Business Functions, Design Standards or Style Guides, System Training and Documentation Needs.

Understand the Principles of Good Screen Design: Human Considerations In Screen Design, Interface Design Goals, Statistical Graphs

UNIT IV

Lecture 8Hrs

Lecture 9 Hrs

Develop System Menus and Navigation Schemes: Structures of Menu, Functions Of Menus, Formatting And Phrasing Of Menus, Navigating Menus, Kinds Of Graphical Menus, Window Characteristics, Components Of A Window, Types Of Windows, Window Operations, Web Systems.

UNIT V

Selecting the Proper Device-Based Controls: Characteristics of Device-Based Controls, Presentation Controls, Write Clear Text and Messages, Provide Effective Feedback and Guidance and Assistance, Create Meaningful Graphics, Icons AndImages, Multimedia, Graphics, Organize and Layout Windows and Pages, The Purpose Of Usability Testing, Developing and Conducting The Test.

Lecture 8Hrs

Lecture 8Hrs

Textbooks:

1. The Essential Guide to User Interface Design, Second Edition, Wilbert O. Galitz, 2002.

Reference Books:

1. User Interface Design, A Software Engineering Perspective, Soren Lauesen.

2. User Interface Design and Evolution, Debbie Stone, Caroline Jarrett, Mark Woodroffe, ShaileyMinocha, 2005

Online Learning Resources:

1. <u>Google UX Design Professional Certificate | Coursera</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech CSE (DS)- IV-I Sem LTPC

(20A32701b) PROCESS MINING (Professional Elective Course-III)

Course Objectives:

- Discuss the basic concepts of Process mining
- Demonstrate how to apply process mining

Course Outcomes:

At the end of the course students will be able to:

- To Learn Transparency Is a Prerequisite for Digital Transformation
- Understand Process Modelling and Analysis
- To learn and apply process discovery techniques
- Applying process mining e •
- Analysis of Lasagna and Spaghetti process and future of process mining.

UNIT I

Lecture 8Hrs

Lecture 9Hrs

0 0 3

3

Introduction: Process Mining in a Nutshell, Purpose: Identifying the Right Use Cases, Challenges, Pitfalls, and Failures. Process Mining, RPA, BPM, and DTO.

UNIT II

Process Mining: The Missing Link- Limitations of Modelling, Process Mining, Analysingan Example Log, Play-In, Play-Out, and Replay, Positioning Process Mining.

Process Modelling and Analysis: The Art of Modelling, Process Models, Model-Based Process Analysis.

UNIT III

Lecture 8Hrs

Process Discovery: A Simple Algorithm for Process Discovery, Rediscovering Process Models, Challenges.

Advanced Process Discovery Techniques: Characteristics, Heuristic Mining, Genetic Process Mining, Region-Based Mining, Inductive Mining.

UNIT IV

Lecture 8Hrs Process Mining Software: Process Mining Not Included, Different Types of Process Mining Tools, ProM: An Open-Source Process Mining Platform, Commercial Software.

Process Mining in the Large: Big Event Data, Case-Based Decomposition, Activity-Based Decomposition, Process Cubes, Streaming Process Mining

UNIT V

Lecture 9 Hrs

Analyzing "Lasagna Processes" - Characterization, Use Cases, Approach, Applications

Analyzing "Spaghetti Processes" - Characterization, Approach, Applications

Outlook: Future of Process Mining- Academic View: Development of the Process Mining Discipline. Business View: Towards a Digital Enabled Organization

Textbooks:

- 1. Reinkemeyer, Lars. "Process mining in action." Principles, Use Cases and Outlook, Santa Barbara, 2020.
- 2. Aalst, Wil van der. "Data science in action." Process mining. Springer, Berlin, Heidelberg, 2016.

Reference Books:

- 1. Ferreira, Diogo R. A primer on process mining: Practical skills with python and graphviz. Cham: Springer International Publishing, 2017.
- 2. Burattin, Andrea. "Process mining techniques in business environments." volume 207 of Lecture Notes in Business Information Processing. Springer International Publishing, 2015.
- 3. Huser, Vojtech. "Process mining: Discovery, conformance and enhancement of business processes." 2012.

(20A32702a) BIO INFORMATICS (Professional Elective Course– IV)

Course Objectives:

- Discuss basic knowledge on various techniques and areas of applications in bioinformatics.
- Explore common problem in bioinformatics, alignment techniques, ethical issues, public data sources, and evolutionary modelling.
- Discover the practical use of tools for specific bioinformatic areas.

Course Outcomes:

- To get introduced to the basic concepts of Bioinformatics and its significance in Biological data analysis.
- Describe the history, scope and importance of Bioinformatics and role of internet in Bioinformatics.
- Explain about the methods to characterise and manage the different types of Biological data
- Classify different types of Biological Databases.
- Introduction to the basics of sequence alignment and analysis.
- Summarize biological macromolecular structures and structure prediction methods.

UNIT I

Bioinformatics and The Internet: Internet Basics, Connecting to The Internet, Electronic Mail, File Transfer Protocol, The World Wide Web.

The NCBI Data Model: Introduction, PUBs: Publicationsorperish, SEQ-Ids: What's In A Name? BIOSEQs: Sequences, BIOSEQ-SETs: Collections Of Sequences, SEQ-ANNOT: Annotating The Sequence, SEQ-DESCR: Describing The Sequence, Using The Model .

UNIT II

Lecture 9Hrs

Lecture 8Hrs

The Gen Bank sequence database: Introduction, Primary and Secondary Databases, Formatvs. Content: Computersvs. Humans, The database. The Gen Bank Flat file: A Dissection.

SUBMITTING DNA SEQUENCES TO THE DATABASES: Introduction, Why, Where, and What to Submit? DNA/RNA, Population, Phylogenetic, and Mutation Studies, Protein-Only Submissions, How to Submit on the World Wide Web, How to Submit with Sequin, Updates, Consequences of the Data Model, EST/STS/GSS/HTG/SNP and Genome Centres, Concluding Remarks, Contact Points for Submission of Sequence Data to DDBJ/EMBL/GenBank.

UNIT III

Lecture 8Hrs

STRUCTURE DATABASES: Introduction to Structures, PDB: Protein Data Bank at the Research Collaboratory for Structural Bioinformatics (RCSB), MMDB: Molecular Modelling Database at NCBI, Structure File Formats, Visualizing Structural Information, Database Structure Viewers, Advanced Structure Modelling, Structure Similarity Searching, ProblemSet

GENOMIC MAPPING AND MAPPING DATABASE: Interplay of Mapping and Sequencing, Genomic Map Elements, Types of Maps, Complexities and Pitfalls of Mapping, Data Repositories, Mapping Projects and Associated Resources, Practical Uses of Mapping Resources, Problem Set. Lecture 8Hrs

UNIT IV

INFORMATION RETRIEVAL FROM BIOLOGICAL DATABASES: Integrated Information Retrieval: The Entrez System,LocusLink,Sequence Databases Beyond NCBI, Medical Databases, Problem Set

SEQUENCE ALIGNMENT AND DATABASE SEARCHING: Introduction, The Evolutionary Basis of Sequence Alignment, The Modular Nature of Proteins, Optimal Alignment Methods,

Substitution Scores and Gap Penalties, Statistical Significance of Alignments, Database Similarity Searching, FASTA, BLAST, Database Searching Artifacts, Position-Specific Scoring Matrices Spliced Alignments.

UNIT V

Lecture 9 Hrs

PHYLOGENETIC ANALYSIS: Fundamental Elements of Phylogenetic Models, Tree Interpretation—The Importance of Identifying Paralogs and Orthologs, Phylogenetic Data Analysis: The Four Steps, Alignment: Building the Data Model, Alignment: Extraction of a Phylogenetic Data Set, Determining the Substitution model, Tree-Building Methods, Distance, Parsimony, and Maximum Likelihood: What's the Difference?, Tree Evaluation, Phylogenetics Software, Internet-Accessible Phylogenetic Analysis Software, Some Simple Practical Considerations.

COMPARATIVE GENOME ANALYSIS: Progress in Genome Sequencing, Genome Analysis and Annotation, Application of Comparative Genomics—Reconstruction of Metabolic Pathways, Avoiding Common Problems in Genome Annotation.

LARGE-SCALE GENOME ANALYSIS: Introduction, Technologies for Large-Scale Gene Expression, Computational Tools for Expression Analysis, Hierarchical Clustering, Prospects for the Future

Textbooks:

1. D. Baxevanis and F. Oulette, (2002) "Bioinformatics: A practical guide to the analysis of genes and proteins", Wiley Indian Edition

2. Cynthia Gibas and Per Jambeck (2001), "Developing Bioinformatics Computer Skills". O'Reilly press, Shorff Publishers and Distributors Pvt. Ltd., Mumbai.

3. Bryan Bergeron MD (2003), "Bioinformatics Computing". Prentice Hall India (Economy Edition)

4. Stuart Brown (2000) "Bioinformatics – A biologists guide to Biocomputing and Internet". Eaton Publishing

Reference Books:

1. T. K. Attwood & D. J. Parry-Smith (2001), "Introduction to Bioinformatics", Pearson Education Ltd, Low Price Edition.

2. Bioinformatics: Sequence and Genome Analysis. D. W. Mount (2001) Cold Spring Harbor Laboratory Press.

3. Arthur M. Lesk (2002) "Introduction to Bioinformatis" Oxford University Press

Online Learning Resources:

- 1. <u>Bioinformatics | Coursera</u>
- 2. Learn Bioinformatics with Online Courses, Classes, & Lessons | edX

(20A05702c) NATURAL LANGUAGE PROCESSING (Professional Elective Course- IV)

Course Objectives:

- Explain and apply fundamental algorithms and techniques in the area of natural language processing (NLP)
- Discuss approaches to syntax and semantics in NLP.
- Examine current methods for statistical approaches to machine translation.
- Teach machine learning techniques used in NLP.

Course Outcomes:

After completion of the course, students will be able to

- Understand the various NLP Applications and Organization of Natural language, able to learn and implement realistic applications using Python.
- Apply the various Parsing techniques, Bayes Rule, Shannon game, Entropy and Cross Entropy.
- Understand the fundamentals of CFG and parsers and mechanisms in ATN's.
- Apply Semantic Interpretation and Language Modelling.
- Apply the concept of Machine Translation and multilingual Information Retrieval systems and Automatic Summarization.

UNIT I Introduction to Natural language

The Study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different Levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English Syntax.

UNIT II Grammars and Parsing

Grammars and Parsing- Top-Down and Bottom-Up Parsers, Transition Network Grammars, Feature Systems and Augmented Grammars, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks, Bayees Rule, Shannon game, Entropy and Cross Entropy.

UNIT III Grammars for Natural Language

Grammars for Natural Language, Movement Phenomenon in Language, Handling questions in Context Free Grammars, Hold Mechanisms in ATNs, Gap Threading, Human Preferences in Parsing, Shift Reduce Parsers, Deterministic Parsers.

UNIT IV

Semantic Interpretation

Semantic & Logical form, Word senses & ambiguity, The basic logical form language, Encoding ambiguity in the logical Form, Verbs & States in logical form, Thematic roles, Speech acts & embedded sentences, Defining semantics structure model theory.

Language Modelling

Introduction, n-Gram Models, Language model Evaluation, Parameter Estimation, Language Model Adaption, Types of Language Models, Language-Specific Modelling Problems, Multilingual and Cross lingual Language Modelling.

UNIT V

Machine Translation

Survey: Introduction, Problems of Machine Translation, Is Machine Translation Possible, Brief History, Possible Approaches, Current Status. Anusaraka or Language Accessor: Background, Cutting the Gordian Knot, The Problem, Structure of Anusaraka System, User Interface, Linguistic Area, Giving up Agreement in Anusarsaka Output, Language Bridges.

Lecture 9Hrs

Lecture 8Hrs

Lecture 8Hrs

Lecture 8Hrs

Lecture9 Hrs

Multilingual Information Retrieval

Introduction, Document Pre-processing, Monolingual Information Retrieval, CLIR, MLIR, Evaluation in Information Retrieval, Tools, Software and Resources.

Multilingual Automatic Summarization

Introduction, Approaches to Summarization, Evaluation, How to Build a Summarizer, Competitions and Datasets.

Textbooks:

- 1. James Allen, Natural Language Understanding, 2nd Edition, 2003, Pearson Education.
- 2. Multilingual Natural Language Processing Applications: From Theory To Practice-Daniel M.Bikel and ImedZitouni, Pearson Publications.
- 3. Natural Language Processing, A paninian perspective, AksharBharathi, Vineetchaitanya, Prentice–Hall of India.

Reference Books:

- 1. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.
- 2. Jurafsky, Dan and Martin, James, Speech and Language Processing, 2nd Edition, Prentice Hall, 2008.
- 3. Manning, Christopher and Henrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

Online Learning Resources:

https://nptel.ac.in/courses/106/105/106105158/ http://www.nptelvideos.in/2012/11/natural-language-processing.html

3 0 0 3

(20A32702b) SOCIAL NETWORK ANALYSIS Professional Elective Course– IV

Course Objectives:	
 Discuss the characteristics of different social networks 	
 Demonstrate the functioning of different social networks 	
Course Outcomes:	
After completion of the course, students will be able to	
Explore the functionality of different social networks	
Analyze social networks	
UNIT I Hacking on Twitter data, Micro formats: Semantic Markup and common sense coll	Lecture 8Hrs ide
	Lastura OUra
Mailboxes: Oldies but Goodies, Titter: Friends, Followers and Set wise operations	Lecture 91118
UNIT III	Lecture 8Hrs
Twitter: The Tweet, the Whole Tweet, and Nothing but the Tweet	
UNIT IV LinkedIn: Clustering your professional network for Fun (and profit)	Lecture 8Hrs
UNIT V Face book: The All-in-one Wonder	Lecture 9 Hrs
Textbooks: Matthew A. Russel, Mining the Social Web, O'Reilly, 2013	

Reference Books:

 Social Network Analysis: A Introduction with an Extensive Implementation to a Large Scale Online Network using Pajek, SeifedineKadry, Mohammed Taie, 2014.
 An Introduction to Social Network Data Analytics, Charu C. Aggarwal, IBM T. J. Watson Research Center.
 Online Learning Resources:

 Social Network Analysis | Coursera

(20A05703b) BLOCKCHAIN TECHNOLOGY AND APPLICATIONS (Professional Elective Course- V)

Course Objectives:

- Understand how blockchain systems (mainly Bitcoin and Ethereum) work and to securely interact with them,
- Design, build, and deploy smart contracts and distributed applications,
- Integrate ideas from blockchain technology into their own projects.

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate the foundation of the Block chain technology and understand the processes in payment and funding.
- Identify the risks involved in building Blockchain applications.
- Review of legal implications using smart contracts.
- Choose the present landscape of Blockchain implementations and Understand Cryptocurrency markets.
- Examine how to profit from trading cryptocurrencies.

UNIT I Introduction

Introduction, Scenarios, Challenges Articulated, Blockchain, Blockchain Characteristics, Opportunities Using Blockchain, History of Blockchain. Evolution of Blockchain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Blockchain Evolution, Consortia, Forks, Public Blockchain Environments, Type of Players in Blockchain Ecosystem, Players in Market.

UNIT IIBlock chain Concepts

Blockchain Concepts: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on blockchain, data storage on blockchain, wallets, coding on blockchain: smart contracts, peer-to-peer network, types of blockchain nodes, risk associated with blockchain solutions, life cycle of blockchain transaction.

UNIT IIIArchitecting Blockchain solutions

Architecting Blockchain solutions: Introduction, Obstacles for Use of Blockchain, Blockchain Relevance Evaluation Framework, Blockchain Solutions Reference Architecture, Types of Blockchain Applications. Cryptographic Tokens, Typical Solution Architecture for Enterprise Use Cases, Types of Blockchain Solutions, Architecture Considerations, Architecture with Blockchain Platforms, Approach for Designing Blockchain Applications.

UNIT IVE there um Block chain Implementation

Ethereum Blockchain Implementation: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, Unit Testing, Ethereum Accounts, MyEtherWallet, Ethereum Networks/Environments, Infura, Etherscan, Ethereum Clients, Decentralized Application, Metamask, Tuna Fish Use Case Implementation, OpenZeppelin Contracts

UNIT VHyperledger Blockchain Implementation Lecture 8Hrs Hyperledger Blockchain Implementation, Introduction, Use Case – Car Ownership Tracking, Hyperledger Fabric, Hyperledger Fabric Transaction Flow, FabCar Use Case Implementation,

Lecture 8Hrs

Lecture 8Hrs

Lecture 9Hrs

Lecture 9Hrs

Invoking Chaincode Functions Using Client Application.

Advanced Concepts in Blockchain: Introduction, Inter Planetary File System (IPFS), Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Blockchain with IoT and AI/ML Quantum Computing and Blockchain, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential.

Textbooks:

1. Ambadas, Arshad SarfarzAriff, Sham "Blockchain for Enterprise Application Developers", Wiley

1. Andreas M. Antonpoulos, "Mastering Bitcoin: Programming the Open Blockchain", O'Reilly

Reference Books:

- 1. Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, Paul R. Allen, Mc Graw Hill.
- 2. Blockchain: Blueprint for a New Economy, Melanie Swan, O'Reilly

Online Learning Resources:

- 1. https://github.com/blockchainedindia/resources
- 2. Hyperledger Fabric https://www.hyperledger.org/projects/fabric
- 3. Zero to Blockchain An IBM Redbooks course, by Bob Dill, David Smits https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0 401.htm
- 4. https://nptel.ac.in/courses/106105184
- 5. https://onlinecourses.nptel.ac.in/noc22_cs44/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR LTPC B.TechCSE(DS)- IV-I Sem

3 0 0 3

(20A05703c) DEEP LEARNING (Professional Elective Course-V)

Course Objectives:

- Demonstrate the major technology trends driving Deep Learning
- Build, train, and apply fully connected deep neural networks
- Implement efficient (vectorized) neural networks
- Analyse the key parameters and hyper parameters in a neural network's architecture

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate the mathematical foundation of neural network
- Describe the machine learning basics
- Differentiate architecture of deep neural network
- Build a convolutional neural network
- Build and train RNN and LSTMs

UNIT I

Lecture 8Hrs

Linear Algebra: Scalars, Vectors, Matrices and Tensors, Matrix operations, types of matrices, Norms, Eigen decomposition, Singular Value Decomposition, Principal Components Analysis.

Probability and Information Theory: Random Variables, Probability Distributions, MarginalProbability, Conditional Probability, Expectation, Variance and Covariance, Baves' Rule, Information Theory. Numerical Computation: Overflow and Underflow, Gradient-Based Optimization, Constrained Optimization, Linear Least Squares.

UNIT II

Machine Learning: Basics and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feed forward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms.

UNIT III

Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms.

UNIT IV

Convolutional Networks: The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Basis for Convolutional Networks.

UNIT V

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models.

Lecture 9Hrs

Lecture 8Hrs

Lecture 9Hrs

Lecture 8Hrs

Textbooks:

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- 2. Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017.

Reference Books:

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2. Deep learning Cook Book, Practical recipes to get started Quickly, DouweOsinga, O'Reilly, Shroff Publishers, 2019.

Online Learning Resources:

1.https://keras.io/datasets/ 2.http://deeplearning.net/tutorial/deeplearning.pdf 3.https://arxiv.org/pdf/1404.7828v4.pdf 4.https://www.cse.iitm.ac.in/~miteshk/CS7015.html 5.https://www.deeplearningbook.org 6.https://nptel.ac.in/courses/106105215

(20A05702b) CRYPTOGRAPHY & NETWORK SECURITY (Professional Elective Course – V)

Course Objectives:

This course aims at training students to master the:

- The concepts of classical encryption techniques and concepts of finite fields and number theory
- Working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes, and message digests, and public key algorithms
- Design issues and working principles of various authentication protocols, PKI standards
- Various secure communication standards including Kerberos, IPsec, TLS and email
- Concepts of cryptographic utilities and authentication mechanisms to design secure applications

Course Outcomes:

- After completion of the course, students will be able to
- Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory
- Compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication
- Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.
- Apply different digital signature algorithms to achieve authentication and create secure applications
- Apply network security basics, analyse different attacks on networks and evaluate the performance of firewalls and security protocols like TLS, IPSec, and PGP
- Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications
 IT I

UNIT I

Computer and Network Security Concepts : Computer Security Concepts, The OSI Security Architecture, Security Attacks ,Security Services , Security Mechanisms ,A Model for Network Security, Classical Encryption Techniques : Symmetric Cipher Model ,Substitution Techniques ,Transposition Techniques ,Steganography, Block Ciphers : Traditional Block Cipher Structure, The Data Encryption Standard, Advanced Encryption Standard :AES Structure, AES Transformation Functions

UNIT II

Number Theory:

The Euclidean Algorithm, Modular Arithmetic, Fermat's and Euler's Theorems, The Chinese Remainder Theorem, Discrete Logarithms, Finite Fields: Finite Fields of the Form GF(p), Finite Fields of the Form $GF(2^n)$. Public Key Cryptography: Principles, Public Key Cryptography Algorithms, RSA Algorithm, Diffie Hellman Key Exchange, Elliptic Curve Cryptography.

UNIT III

Lecture 9Hrs

Lecture 9Hrs

Cryptographic Hash Functions: Application of Cryptographic Hash Functions, Requirements& Security, Secure Hash Algorithm, Message Authentication Functions, Requirements & Security, HMAC & CMAC. Digital Signatures: NIST Digital Signature Algorithm, Distribution of Public Keys, X.509 Certificates, Public-Key Infrastructure

UNIT IV

Lecture 9Hrs

User Authentication: Remote User Authentication Principles, Kerberos. Electronic Mail Security: Pretty Good Privacy (PGP) And S/MIME.

IP Security: IP Security Overview, IP Security Policy, Encapsulating Security Payload, Combining Security Associations, Internet Key Exchange.

UNIT V

Lecture 8Hrs

Transport Level Security: Web Security Requirements, Transport Layer Security (TLS), HTTPS, Secure Shell(SSH)

Firewalls: Firewall Characteristics and Access Policy, Types of Firewalls, Firewall Location and Configurations.

Textbooks:

- 1. Cryptography and Network Security- William Stallings, Pearson Education, 7thEdition.
- 2. Cryptography, Network Security and Cyber Laws Bernard Menezes, Cengage Learning, 2010 edition.

Reference Books:

- 1. Cryptography and Network Security- Behrouz A Forouzan, DebdeepMukhopadhyaya, Mc-GrawHill, 3rd Edition, 2015.
- 2. Network Security Illustrated, Jason Albanese and Wes Sonnenreich, MGH Publishers, 2003.

Online Learning Resources:

- 1. <u>https://nptel.ac.in/courses/106/105/106105031/lecture</u> Dr.DebdeepMukhopadhyayIITKharagpur [VideoLecture]
- 2. <u>https://nptel.ac.in/courses/106/105/106105162/lecture</u> Dr.SouravMukhopadhyay IIT Kharagpur [VideoLecture]
- 3. <u>https://www.mitel.com/articles/web-communication-cryptography-and-network-security</u>web articles by Mitel Power Connections

3 0 0 3

(20A52701a) ENTREPRENEURSHIP & INCUBATION (HUMANITIES ELECTIVE II)

Course Objectives:

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Course Outcomes:

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

UNIT I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

UNIT II

Starting the New Venture - Generating business idea – Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

UNIT III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance – Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey- Institutions in aid of entrepreneurship development

UNIT IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants – Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

UNIT V

Fundamentals of Business Incubation - Principles and good practices of business incubation- Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business

incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Textbooks:

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit : login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

References:

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.JanakiramandM.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-Resources

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- 3. http://nptel.ac.in/courses/122106032/Pdf/7_4.pd
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

$\frac{2}{3}$ 0 0 3

(20A52701b) MANAGEMENT SCIENCE (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training& Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Course Outcomes:

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

UNITI INTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - **Organisational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

UNIT II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Statistical Quality Control- Deming's contribution to Quality. **Material Management -**Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management - **Marketing Management -** Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

UNIT III HUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning – Nature - Managerial and Operative functions - Evolution of HRM -Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment -Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept -Methods of Performance Appraisal – Placement - Employee Induction - Wage and Salary Administration

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management -** Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

UNIT V CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) -Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept -Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Re-engineering and Bench Marking -Balanced Score Card - Knowledge Management.

Textbooks:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

References:

- 1. Koontz & Weihrich, "Essentials of Management", 6th edition, TMH, 2005.
- 2. Thomas N.Duening& John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- 3. Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
- 4. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

3 0 0 3

(20A52701c) ENTERPRISE RESOURCE PLANNING (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Course Outcomes:

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

UNITI

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

UNITII

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Design-making Capability

UNITIII

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

UNITIV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

UNITV

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Textbooks:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

References:

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. "ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

(20A32703) NO SQL USING MONGO DB Skill Oriented Course - V

Pre-requisite DBMS, Basic knowledge of DataScience

Course Objectives:

- This course elucidates concepts related to Mongodb.
- The students will get hands- on experience in working with NoSQL and Mongodb.

Course Outcomes (CO):

After completion of the course, students will be able to

- Understand the working of NoSQL, Mongodb, its features
- Explain and compare different types of Data
- Demonstrate the detailed architecture and performance tune of Document-oriented databases.
- Explain performance tune of Key-Value Pair NoSQL databases.
- Apply NoSQL development tools on MongoDB

UNIT - I

Introduction, Getting Started- Documents, Collections, Databases, Getting and Starting MongoDB, Introduction to MongoDB Shell, Data Types, Using the MongoDB Shell

Creating, Updating, and Deleting Documents: Inserting and Saving Documents, Updating Documents, Setting a write concern

UNIT - II

Indexing: Introduction to Indexing, Using explain () and hint(), When Not to use Index, Types of Indexes, Index Administration

Special Index and Collection Types: Capped Collections, Time-To-Live Indexes, Full-Text Indexes, Geospatial Indexing, Storing Files with GridFS

UNIT - III

Aggregation: The Aggregation Framework, Pipeline Operations, MapReduce, Aggregation Commands

Application Design: Normalization versus Denormalization, Optimizations for Data Manipulation, Planning Out Databases and Collections, Managing Consistency, Migrating, Schemas, When Not to use MongoDB

Setting Up a Replica Set: Introduction to Replication, A One-minute Test Setup, configuring a ReplicaSet, changing your ReplicaSet Configuration, How to design a Set, Member Configuration Options

UNIT - IV

Administration: Starting Members in Standalone Mode, Replica Set Configuration, Manipulating Member State, Monitoring Replication, Master-Slave

Sharding Administration: Seeing the Current State, Tracking Network Connections, Server Administration, Balancing Data

Data Administration: Setting Up Authentication, Creating and Deleting Indexes, Preheating Data, Compacting Data, Moving Collections, Pre-allocating Data Files

UNIT - V

Starting and Stopping MongoDB: Starting from the Command Line, Stopping MongoDB, Security, Logging

Monitoring MongoDB: Monitoring Memory Usage, Calculating the Working Set, Tracking Performance, Monitoring Replication

Making Backups: Backing Up a server, Backing Up a ReplicaSet, Backing Up a Sharded Cluster, Cresting Incremental Backups with mongoopolog

Designing the System, Virtualization, Configuring System Settings, Configuring your network, System Housekeeping

Textbooks:

- 1. "MongoDB: The Definitive Guide", SECOND EDITION by Kristina Chodorow, Published by O'Reilly Media, Inc.
- 2. "The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing", by EelcoPlugge, Peter Membrey and Tim Hawkins, Apress

Reference Books:

1. MongoDB Complete Guide: Develop Strong Understanding of Administering MongoDB, CRUD Operations, MongoDB Commands,2021

Online Learning Resources:

What Is NoSQL? NoSQL Databases Explained | MongoDB

List of Experiments

- 1. Install MongoDB
- 2. Install MongDB Shell and Practice
- 3. Connect to a MobgoDB Deployment
- 4. Perform CRUD operations
- 5. Run Aggregation pipeline
- 6. Perform Client side Field level encryption
- 7. Write scripts to modify data and perform some administrative operations

Projects

Build a Content Management System using MongoDB Build a File sharing application similar to Dropbox and Google drive using MongoDB

OPEN ELECTIVES

L 1 1 C 3 0 0 3

(20A01505) BUILDING TECHNOLOGY (Open Elective-I)

Course Objectives:

- To know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

Course Outcomes (CO):

- Understand the principles in planning and design the buildings
- To get different types of buildings, principles and planning of the buildings
- To know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

UNIT I

Overview of the course, basic definitions, buildings-types-components-economy and designprinciples of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

UNIT II

Termite proofing: Inspection-control measures and precautions-lighting protection of buildingsgeneral principles of design of openings-various types of fire protection measures to be considered while panning a building.

UNIT III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairsplanning of stairs-other modes of vertical transportation –lifts-ramps-escalators.

UNIT IV

Prefabrication systems in residential buildings-walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

UNIT V

Acoustics –effect of noise –properties of noise and its measurements, principles of acoustics of building. Sound insulation-importance and measures.

Textbooks:

- 1. Building construction by Varghese, PHI Learning Private Limited 2nd Edition 2015
- 2. Building construction by Punmia.B.C, Jain.A.K and Jain.A.K Laxmi Publications 11th edition 2016

Reference Books:

- 1. National Building Code of India, Bureau of Indian Standards
- 2. Building construction-Technical teachers training institute, Madras, Tata McGraw Hill.
- 3. Building construction by S.P.Arora and S.P.BrndraDhanpat Rai and Sons Publications, New Delh 2014 edition

https://nptel.ac.in/courses/105102206 https://nptel.ac.in/courses/105103206

3 0 0 3

(20A02505) ELECTRIC VEHICLES (Open Elective-I)

Course Objectives:

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

Course Outcomes:

- Understand and differentiate between conventional and latest trends in Electric Vehicles
- Analyze various EV resources, EV dynamics and Battery charging
- Apply basic concepts of EV to design complete EV system
- Design EV system with various fundamental concepts

UNIT I INTRODUCTION TO EV SYSTEMS AND PARAMETERS

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters.

UNIT II EV AND ENERGY SOURCES

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

UNIT III EV PROPULSION AND DYNAMICS

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

UNIT IV FUEL CELLS

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

UNIT V BATTERY CHARGING AND CONTROL

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electromechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2005.
- 2. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

Online Learning Resources:

1. <u>https://onlinecourses.nptel.ac.in/noc22_ee53/preview</u>

3 0 0 3

(20A03505) 3D PRINTING TECHNOLOGY (Open Elective-I)

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

Course Outcomes:

- Use techniques for processing of CAD models for rapid prototyping.
- Understand and apply fundamentals of rapid prototyping techniques.
- Use appropriate tooling for rapid prototyping process.
- Use rapid prototyping techniques for reverse engineering.
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes.

UNIT I Introduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT II Solid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applicationsof Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT III Powder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IV Rapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

UNIT V Errors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc.

Software: Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP. **Applications:** Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse

Engineering, Medical Applications of RP.

Textbooks:

1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.

2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdfcompressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- <u>https://www.youtube.com/watch?v=NkC8TNts4B4</u>

3 0 0 3

(20A04507) MATLAB PROGRAMMING FOR ENGINEERS

Course Objectives:

To provide fundamental knowledge of programming language for solving problems. **Course Outcomes:** On completion of the course, students will be able to

- Generate arrays and matrices for numerical problems solving.
- Represent data and solution in graphical display.
- Write scripts and functions to easily execute series of tasks in problem solving.
- Use arrays, matrices and functions in Engineering applications
- Design GUI for basic mathematical applications.

UNIT I

Introduction: Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types. MATLAB Basics: Variables and Constants –Vectors and Matrices- Arrays - manipulation-Built-in MATLAB Functions. Creating and printing simple plots, Creating, Saving and Executing a Script File, Creating and Executing a function file. Programming Basics: Data Types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, if-else-end structure, if-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

UNIT II

Scripts and Functions Script Files, Function Files, Debugging methods in MATLAB. Graphics: Basic 2D plots: Printing labels- grid and axes box- Entering text in a box- Axis control-Style options Multiple plots-subplots-specialized 2D plots: stem-, bar, hist, pi, stairs, loglog, semilog,polar,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

UNIT III

Numerical Methods Using MATLAB Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration. Linear Equations- Linear algebra in MATLAB, solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

UNIT IV

Nonlinear Equations System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit, cubic fit using least square method. Finding roots of a polynomial - roots function, Newton-Raphson Method.

UNIT V

Solution of Ordinary differential Equations (ODEs)-The 4th order Runge-kutta Method, ODE Solvers in MATLAB, Solving First –order equations using ODE23 and ODE45. Structures and Graphical user interface (GUI): Advanced data Objects, how a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- 2. Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.

- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition- Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- 4. An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, Elsevier-18th April 2014.
- 5. https://nptel.ac.in/courses/103106118/2
- 6. https://www.udemy.com/numerical-methods

(20A04508) INTRODUCTION TO CONTROL SYSTEMS

Course Objectives:

• To learn the concepts of linear Systems theory and its analysis.

Course Outcomes:

- Understand different system representation, block diagram reduction and Mason's rule.
- Determine Time response analysis of LTI systems and steady state error.
- Plot open loop and closed loop frequency responses of systems
- Understand Stability concept.
- Perform State variable analysis.

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction– Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOT LOCUS TECHNIQUE

Standard test signals – Steady state error & error constants – Time Response of I and II order system – Root locus – Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

Concept of stability – Necessary condition – RH criterion – Relative stability – Nyquist stability criterion – Stability from Bode plot – Relative stability from Nyquist & Bode – Closed loop frequency response.

UNIT V STATE VARIABLE ANALYSIS

Concept of state – State Variable & State Model – State models for linear & continuous time systems – Solution of state & output equation – controllability & observability.

Textbooks:

- 1. Benjamin C. Kuo, Automatic Control Systems, PHI Learning Private Ltd, 2010.
- 2. J. Nagrath and M. Gopal, Control Systems Engineering, Tata McGraw-Hill Education Private Limited, Reprint, 2010.

References:

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, Third Impression, 2009.
- 2. S. Palani, Control System Engineering, Tata McGraw-Hill Education Private Limited, First Reprint, 2010.

(20A27505) COMPUTER APPLICATIONS IN FOOD TECHNOLOGY (Open Elective-1)

Course Objectives:

- To know different software and applications in food technology.
- To understand the Chemical kinetics in food processing, Microbial distraction in thermal processing of food.
- To acquire knowledge on computer aided manufacturing and control of food machinery, inventory control, process control.

Course Outcomes:

- Students will gain knowledge on software in food technology, data analysis, Chemical kinetics, microbial distortion in thermal process
- Use of linear regression in analyzing sensory data, application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants.

UNIT I

Introduction to various software and their applications in food technology. Application of MS Excel to solve the problems of Food Technology, SPSS and JMP for data analysis, Pro-Engineering for design, Lab VIEW and SCADA for process control.

UNIT II

Chemical kinetics in food processing: Determining rate constant of zero order reaction First order rate constant and half-life of reactions. Determining energy of activation of vitamin degradation during food storage Rates of Enzymes catalyzed reaction. Microbial distraction in thermal processing of food. Determining decimal reduction time from microbial survival data, Thermal resistance factor, Z-values in thermal processing of food. Sampling to ensure that a lot is not contaminated with more than a given percentage Statistical quality control. Probability of occurrence in normal distribution. Using binomial distribution to determine probability of occurrence. Probability of defective items in a sample obtained from large lot

UNIT III

Sensory evaluation of food Statistical descriptors of a population estimated from sensory data obtained from a sample Analysis of variance. One factor, completely randomized design For two factor design without replication. Use of linear regression in analyzing sensory data. Mechanical transport of liquid food. Measuring viscosity of liquid food using a capillary tube viscometer . Solving simultaneous equations in designing multiple effect evaporator while using matrix algebra available in excel.

UNIT IV

Familiarization with the application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants, stating from the receiving of raw material up to the storage & dispatch of finished product.

UNIT V

Basic Introduction to computer aided manufacturing. Application of computers, instrumentation and control of food machinery, inventory control, process control etc.

Recommended books:

- 1. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis by R. Paul Singh, AP.
- 2. Manuals of MS Office.

(20A54501) OPTIMIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

This course enables the students to classify and formulate real-life problem for modeling as optimization problem, solving and applying for decision making.

Course Outcomes: Student will be able to

- formulate a linear programming problem and solve it by various methods.
- give an optimal solution in assignment jobs, give transportation of items from sources to destinations.
- identify strategies in a game for optimal profit.
- implement project planning.

UNIT I

Introduction to operational research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method.

UNIT II

Transportation problems- assignment problems-Game theory.

UNIT III

CPM and PERT –Network diagram-Events and activities-Project Planning-Reducing critical events and activities-Critical path calculations.

UNIT IV

Sequencing Problems-Replacement problems-Capital equipment- Discounting costs- Group replacement.

UNIT V

Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic inventory models- Single period inventory models with shortage cost.

Textbooks:

- 1. Operations Research , S.D. Sharma.
- 2. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 3. Operations Research, Nita H Shah, Ravi M Gor, Hardik Soni, PHI publishers

Reference Books:

- 1. Problems on Operations Research, Er. Prem kumargupta, Dr.D.S. Hira, Chand publishers
- 2. Operations Research, CB Gupta, PK Dwivedi, Sunil kumaryadav

Online Learning Resources:

https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L2slides.pdf https://slideplayer.com/slide/7790901/ https://www.ime.unicamp.br/~andreani/MS515/capitulo12.pdf

(20A56501) MATERIALS CHARACTERIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

- To provide an exposure to different characterization techniques.
- To enlighten the basic principles and analysis of different spectroscopic techniques.
- To explain the basic principle of Scanning electron microscope along with its limitations and applications.
- To identify the Resolving power and Magnification of Transmission electron microscope and its applications.
- To educate the uses of advanced electric and magnetic instruments for characterization.

Course Outcomes: At the end of the course the student will be able

- To explain the structural analysis by X-ray diffraction.
- To understand the morphology of different materials using SEM and TEM.
- To recognize basic principles of various spectroscopic techniques.
- To study the electric and magnetic properties of the materials.
- To make out which technique can be used to analyse a material

UNIT I

Structure analysis by Powder X-Ray Diffraction: Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherrer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II

Microscopy technique -1 –Scanning Electron Microscopy (SEM)

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III

Microscopy Technique -2 - Transmission Electron Microscopy (TEM): Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy.

UNIT IV

Spectroscopy techniques – Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V

Electrical & Magnetic Characterization techniques: Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods – Yang

Leng – John Wiley & Sons (Asia) Pvt. Ltd. 2008

2. Handbook of Materials Characterization -by Sharma S. K. - Springer

References:

1. Fundamentals of Molecular Spectroscopy - IV Ed. - Colin Neville Banwell and Elaine M.

McCash, Tata McGraw-Hill, 2008.

2. Elements of X-ray diffraction - Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall, 2001

3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods-<u>Yang Leng</u>- John Wiley & Sons

4. Characterization of Materials 2nd Edition, 3 Volumes-Kaufmann E N -John Wiley (Bp)

(20A51501) CHEMISTRY OF ENERGY MATERIALS (Open Elective- I)

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

Course Outcomes:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

UNIT I: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

UNIT II: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

UNIT III: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

UNIT IV: Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

UNIT V: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

References:

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

L T P C 3 0 0 3

(20A01605) ENVIRONMENTAL ECONOMICS (Open Elective Course - II)

Course Objectives:

- To impart knowledge on sustainable development and economics of energy
- To teach regarding environmental degradation and economic analysis of degradation
- To inculcate the knowledge of economics of pollution and their management
- To demonstrate the understanding of cost benefit analysis of environmental resources
- To make the students to understand principles of economics of biodiversity

Course Outcomes :

After the completion of the course, the students will be able to know

- The information on sustainable development and economics of energy
- The information regarding environmental degradation and economic analysis of degradation
- The identification of economics of pollution and their management
- The cost benefit analysis of environmental resources
- The principles of economics of biodiversity

UNIT I

Sustainable Development: Introduction to sustainable development - Economy-Environment interlinkages - Meaning of sustainable development - Limits to growth and the environmental Kuznets curve – The sustainability debate - Issues of energy and the economics of energy – Nonrenewable energy, scarcity, optimal resources, backstop technology, property research, externalities, and the conversion of uncertainty.

UNIT II

Environmental Degradation: Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation – Equi –marginal principle.

UNIT - III

Economics of Pollution: Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions – Managing pollution through market intervention: Taxes, subsidies and permits.

UNIT IV

Cost – Benefit Analysis: Economic value of environmental resources and environmental damage - Concept of Total Economic Value - Alternative approaches to valuation – Cost-benefit analysis and discounting.

UNIT V

Economics of biodiversity: Economics of biodiversity conservation - Valuing individual species and diversity of species -Policy responses at national and international levels. Economics of Climate Change – stern Report

Textbooks:

- 1. An Introduction to Environmental Economics by N. Hanley, J. Shogren and B. White Oxford University Press.(2001)
- 2. Blueprint for a Green Economy by D.W. Pearce, A. Markandya and E.B. Barbier Earthscan, London.(1989)

Reference Books:

- 1. Environmental Economics: An Elementary Introduction by R.K. Turner, D.W. Pearce and I. Bateman Harvester Wheatsheaft, London. (1994),
- 2. Economics of Natural Resources and the Environment by D.W. Pearce and R.K. Turner Harvester Wheat sheaf, London. (1990),
- 3. Environmental and Resource Economics: An Introduction by Michael S. Common and Michael Stuart 2ndEdition, Harlow: Longman.(1996),
- 4. Natural Resource and Environmental Economics by Roger Perman, Michael Common, Yue Ma and James Mc Gilvray 3rdEdition, Pearson Education.(2003),

Online Learning Resources:

https://nptel.ac.in/courses/109107171

3 0 0 3

(20A02605) SMART ELECTRIC GRID (Open Elective Course-II)

Course Objectives:

- Understand recent trends in grids, smart grid architecture and technologies
- Analyze smart substations
- Apply the concepts to design smart transmission systems
- Apply the concepts to design smart distribution systems

Course Outcomes:

- Understand trends in Smart grids, needs and roles of Smart substations
- Design and Analyze Smart Transmission systems
- Design and Analyze Smart Distribution systems
- Analyze SCADA and DSCADA systems in practical working environment

UNIT I INTRODUCTION TO SMART GRID

Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions – Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid

UNIT II SMART GRID TECHNOLOGIES

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

UNIT III SMART SUBSTATIONS

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

UNIT IV SMART TRANSMISSION SYSTEMS

Energy Management systems, History, current technology, EMS for the smart grid, Synchro Phasor Measurement Units (PMUs), Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid

UNIT V SMART DISTRIBUTION SYSTEMS

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Textbooks:

- 1. Stuart Borlase, Smart Grids Infrastructure, Technology and Solutions, CRC Press, 1e, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley–IEEE Press, 2e, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2e, 2017.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2e, 2012. **Online Learning Resources:**

1. <u>https://onlinecourses.nptel.ac.in/noc22_ee82/preview</u>

3 0 0 3

(20A03605c) INTRODCUTION TO ROBOTICS (Open Elective-II)

Course Objectives:

- Learn the fundamental concepts of industrial robotic technology.
- Apply the basic mathematics to calculate kinematic and dynamic forces in robot manipulator.
- Understand the robot controlling and programming methods.
- Describe concept of robot vision system

Course Outcomes:

After completing the course, the student will be able to,

- Explain fundamentals of Robots
- Apply kinematics and differential motions and velocities
- Demonstrate control of manipulators
- Understand robot vision
- Develop robot cell design and programming

UNIT I Fundamentals of Robots

Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots. Introduction to matrix representation of a point in a space a vector in space, a frame in space, Homogeneous transformation matrices, representation of a pure translation, pure rotation about an axis.

UNIT II Kinematics, Differential motions and velocities of robot

Kinematics of robot: Forward and inverse kinematics of robots- forward and inverse kinematic equations for position and orientation, Denavit-Hartenberg(D-H) representation of forward kinematic equations of robots, the inverse kinematic of robots, degeneracy and dexterity, simple problems with D-H representation.

Differential motions and Velocities: Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame. Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

UNIT III Control of Manipulators

Open- and close-loop control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

UNIT IV Robot Vision

Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

UNIT V Robot Cell Design and Programming

Robot cell layouts-Robot centred cell, In-line robot cell, considerations in work cell design, work cell control, interlocks, error detection, work cell controller. methods of robot programming, WAIT, SIGNAL, and DELAY commands, Robotic languages, VAL system.

Textbooks:

- 1. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

References:

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- **3.** Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.

Online Learning Resources:

https://nptel.ac.in/courses/108105088 https://nptel.ac.in/courses/108105063 https://nptel.ac.in/courses/108105062 https://nptel.ac.in/courses/112104288

(20A04605) SIGNAL PROCESSING (Open Elective Course -II)

Course objectives:

- Understand, represent and classify continuous time and discrete time signals and systems, together with the representation of LTI systems.
- Ability to represent continuous time signals (both periodic and non-periodic) in the time domain, sdomain and the frequency domain
- Understand the properties of analog filters, and have the ability to design Butterworth filters
- Understand and apply sampling theorem and convert a signal from continuous time to discrete time or from discrete time to continuous time (without loss of information)
- Able to represent the discrete time signal in the frequency domain
- Able to design FIR and IIR filters to meet given specifications

Course Outcomes:

- Understand and explain continuous time and discrete time signals and systems, in time and frequency domain
- Apply the concepts of signals and systems to obtain the desired parameter/ representation
- Analyse the given system and classify the system/arrive at a suitable conclusion
- Design analog/digital filters to meet given specifications
- Design and implement the analog filter using components/ suitable simulation tools
- Design and implement the digital filter using suitable simulation tools, and record the input and output of the filter for the given audio signal

UNIT I

Signal Definition, Signal Classification, System definition, System classification, for both continuous time and discrete time. Definition of LTI systems

UNIT II

Introduction to Fourier Transform, Fourier Series, Relating the Laplace Transform to Fourier Transform, Frequency response of continuous time systems

UNIT III

Frequency response of ideal analog filters, Salient features of Butterworth filters Design and implementation of Analog Butterworth filters to meet given specifications

UNIT IV

Sampling Theorem- Statement and proof, converting the analog signal to a digital signal. Practical sampling. The Discrete Fourier Transform, Properties of DFT. Comparing the frequency response of analog and digital systems.

UNIT V

Definition of FIR and IIR filters. Frequency response of ideal digital filters

Transforming the Analog Butterworth filter to the Digital IIR Filter using suitable mapping techniques, to meet given specifications. Design of FIR Filters using the Window technique, and the frequency sampling technique to meet given specifications Comparing the designed filter with the desired filter frequency response

Textbooks:

1. 'Signals and Systems', by Simon Haykin and Barry Van Veen, Wiley.

- 1. 'Theory and Application of Digital Signal Processing', Rabiner and Gold
- 2. 'Signals and Systems', Schaum's Outline series
- 3. 'Digital Signal Processing', Schaum's Outline series

(20A04606) BASIC VLSI DESIGN

Course Objectives:

- Understand the fundamental aspects of circuits in silicon
- Relate to VLSI design processes and design rules

Course Outcomes:

- Identify the CMOS layout levels, and the design layers used in the process sequence.
- Describe the general steps required for processing of CMOS integrated circuits.
- Design static CMOS combinational and sequential logic at the transistor level.
- Demonstrate different logic styles such as complementary CMOS logic, pass-transistor Logic, dynamic logic, etc.
- Interpret the need for testability and testing methods in VLSI.

UNIT I

Moore's law, speed power performance, nMOS fabrication, CMOS fabrication: n-well, pwell processes, BiCMOS, Comparison of bipolar and CMOS. Basic Electrical Properties of MOS And BiCMOS Circuits: Drain to source current versus voltage characteristics, threshold voltage, transconductance.

UNIT II

Basic Electrical Properties of MOS And BiCMOS Circuits: nMOS inverter, Determination of pull up to pull down ratio: nMOS inverter driven through one or more pass transistors, alternative forms of pull up, CMOS inverter, BiCMOS inverters, latch up. Basic Circuit Concepts: Sheet resistance, area capacitance calculation, Delay unit, inverter delay, estimation of CMOS inverter delay, super buffers, BiCMOS drivers.

UNIT III

MOS and BiCMOS Circuit Design Processes: MOS layers, stick diagrams, nMOS design style, CMOS design style Design rules and layout & Scaling of MOS Circuits: λ - based design rules, scaling factors for device parameters

UNIT IV

Subsystem Design and Layout-1: Switch logic pass transistor, Gate logic inverter, NAND gates, NOR gates, pseudo nMOS, Dynamic CMOS Examples of structured design: Parity generator, Bus arbitration, multiplexers, logic function block, code converter.

UNIT V

Subsystem Design and Layout-2: Clocked sequential circuits, dynamic shift registers, bus lines, General considerations, 4-bit arithmetic processes, 4-bit shifter, RegularityDefinition & Computation Practical aspects and testability: Some thoughts of performance, optimization and CAD tools for design and simulation.

Textbooks:

1. "Basic VLSI Design", Douglas A Pucknell, Kamran Eshraghian, 3 rd Edition, Prentice Hall of India publication, 2005.

- 1. "CMOS Digital Integrated Circuits, Analysis And Design", Sung Mo (Steve) Kang, Yusuf Leblebici, Tata McGraw Hill, 3 rd Edition, 2003.
- 2. "VLSI Technology", S.M. Sze, 2nd edition, Tata McGraw Hill, 2003

(20A27605) FOOD REFRIGERATION AND COLD CHAIN MANAGEMENT OPEN ELECTIVE II

Course Objectives:

- To know the equipment available to store perishable items for a long time
- To understand to increase the storage life of food items

Course Outcomes

By the end of the course, the students will

- Understand various principles and theories involved in refrigeration systems
- Understand the different equipment useful to store the food items for a long period.
- Understand how to increase the storage life of food items

UNIT I

Principles of refrigeration: Definition, background with second law of thermodynamics, unit of refrigerating capacity, coefficient of performance; Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization; Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures;

UNIT II

Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression; Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry vs wet compression, throttling vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling;

UNIT III

Liquid-vapour regenerative heat exchanger for vapour compression system, effect of suction vapour super heat and liquid sub cooling, actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine, Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; Azeotropes; Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;

UNIT IV

Ice manufacture, principles and systems of ice production, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice; Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations; Refrigerated transport: Handling and distribution, cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display;

UNIT V

Air-conditioning: Meaning, factors affecting comfort air-conditioning, classification, sensible heat factor, industrial air-conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air-conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air-conditioning systems; humidifiers and dehumidifiers; Cooling load calculations: Load sources, product cooling, conducted heat, convicted heat, internal heat sources, heat of respiration, peak load; etc.

Textbooks:

1. Arora, C. P. "Refrigeration and Air Conditioning". Tata MC Graw Hill Publishing Co.Ltd., New Delhi. 1993.

References:

1. Adithan, M. and Laroiya, S. C. "Practical Refrigeration and Air Conditioning". Wiley Estern Ltd., New Delhi 1991

3 0 0 3

(20A54701) WAVELET TRANSFORMS AND ITS APPLICATIONS (Open Elective-II)

Course Objectives:

This course provides the students to understand Wavelet transforms and its applications.

Course Outcomes:

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

UNIT I Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems -Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis -The Discrete Wavelet Transform the Discrete-Time and Continuous Wavelet Transforms.

UNIT II A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT III Filter Banks and the Discrete Wavelet Transform

Analysis - From Fine Scale to Coarse Scale- Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients -Lattices and Lifting - Different Points of View.

UNIT IV Time-Frequency and Complexity

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Textbooks:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

Reference Books:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

Online Learning Resources:

https://www.slideshare.net/RajEndiran1/introduction-to-wavelet-transform-51504915

(20A56701) PHYSICS OF ELECTRONIC MATERIALS AND DEVICES (Open Elective-II)

Course Objectives:

- To impart the fundamental knowledge on various materials, their properties and applications.
- To provide insight into various semiconducting materials, and their properties.
- To enlighten the characteristic behavior of various semiconductor devices.
- To provide the basics of dielectric and piezoelectric materials and their properties.
- To explain different categories of magnetic materials, mechanism and their advanced applications.

Course Outcome: At the end of the course the student will be able

- To understand the fundamentals of various materials.
- To exploit the physics of semiconducting materials
- To familiarize with the working principles of semiconductor-based devices.
- To understand the behaviour of dielectric and piezoelectric materials.
- To identify the magnetic materials and their advanced applications.

UNIT I Fundamentals of Materials Science

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. Basic idea of point, line and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RT and glow discharge).

UNIT II Semiconductors

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor devices

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Construction and working principles of: Light emitting diodes, Heterojunctions, Transistors, FET and MOSFETs.

UNIT IV Dielectric Materials and their applications:

Introduction, Dielectric properties, Electronic polarizability and susceptibility, Dielectric constant and frequency dependence of polarization, Dielectric strength and dielectric loss, Piezoelectric properties.

UNIT V Magnetic Materials and their applications

Introduction, Magnetism & various contributions to para and dia magnetism, Ferro and Ferri magnetism and ferrites, Concepts of Spin waves and Magnons, Anti-ferromagnetism, Domains and domain walls, Coercive force, Hysteresis, Nano-magnetism, Super-paramagnetism – Properties and applications.

Textbooks

- 1. Principles of Electronic Materials and Devices- S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd., 3rd edition, 2007.
- 2. Electronic Components and Materials- Grover and Jamwal, Dhanpat Rai and Co.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning, 6th edition
- 2. Electronic Materials Science- Eugene A. Irene, , Wiley, 2005
- 3. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd., , 2nd Edition,2011
- 4. A First Course In Material Science- by Raghvan, McGraw Hill Pub.
- 5. The Science and Engineering of materials- Donald R.Askeland, Chapman& Hall Pub.

NPTEL courses links

https://nptel.ac.in/courses/113/106/113106062/

https://onlinecourses.nptel.ac.in/noc20_mm02/preview, https://nptel.ac.in/noc/courses/noc17/SEM1/noc17mm07

(20A51701) CHEMISTRY OF POLYMERS AND ITS APPLICATIONS

Course Objectives:

- To understand the basic principles of polymers
- To synthesize the different polymeric materials and their characterization by various instrumental methods.
- To impart knowledge to the students about fundamental concepts of Hydro gels of polymer networks, surface phenomenon by micelles
- To enumerate the applications of polymers in engineering

Course Outcome

- At the end of the course, the student will be able to:
- Understand the state of art synthesis of Polymeric materials
- Understand the hydro gels preparation, properties and applications in drug delivery system.
- Characterize polymers materials using IR, NMR, XRD.
- Analyze surface phenomenon fo micelles and characterise using photoelectron spectroscopy, ESCA and Auger spectroscopy

UNIT I : Polymers-Basics and Characterization

Basic concepts: monomers, repeat units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: condensation, addition, radical chain, ionic and coordination and copolymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution Measurement of molecular weight: end group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Unit II : Synthetic Polymers

Addition and condensation polymerization processes – Bulk, Solution, Suspension and Emulsion polymerization.

Preparation and significance, classification of polymers based on physical properties, Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications.

Preparation of Polymers based on different types of monomers, Olefin polymers, Diene polymers, nylons, Urea - formaldehyde, phenol - formaldehyde and melamine Epoxy and Ion exchange resins. Characterization of polymers by IR, NMR, XRD.

UNIT III : Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEAK. Learning Outcomes:

UNIT IV: Hydrogels of Polymer networks and Drug delivery

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Introduction to drug systems including, drug development, regulation, absorption and disposition, routes of administration and dosage forms. Advanced drug delivery systems and controlled release.

UNIT V : Surface phenomena

Surface tension, adsorption on solids, electrical phenomena at interfaces including electrokinetics, micelles, reverse micelles, solubilization. Application of photoelectron spectroscopy, ESCA and Auger spectroscopy to the study of surfaces.

- 1. A Text book of Polymer science, Billmayer
- 2. Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
- 3. Advanced Organic Chemistry, B.Miller, Prentice Hall
- 4. Polymer Chemistry G.S.Mishra
- 5. Polymer Chemistry Gowarikar
- 6. Physical Chemistry Galston
- 7. Drug Delivery- Ashim K. Misra

3 0 0 3

(20A01704) COST EFFECTIVE HOUSING TECHNIQUES (Open Elective Course - III)

Course Objectives:

- To understand the requirements of structural safety for future construction.
- To know about the housing scenario, housing financial systems land use and physical
- planning for housing and housing the urban poor
- To know the traditional practices of rural housing
- To know the different innovative cost effective construction techniques
- To know the alternative building materials for low cost housing.

Course Outcomes :

- To know the repair and restore action of earthquake damaged non engineered buildings and ability to understand the requirements of structural safety for future construction
- To know about the housing scenario, housing financial systems land use and physical planning for housing and housing the urban poor
- Apply the traditional practices of rural housing
- Understand the different innovative cost effective construction techniques
- Suggest the alternative building materials for low cost housing

UNIT I

- a) Housing Scenario :Introducing Status of urban housing Status of Rural Housing
- b) **Housing Finance**: Introducing Existing finance system in India Government role as facilitator Status at Rural Housing Finance Impedimently in housing finance and related issues
- c) Land use and physical planning for housing :Introduction Planning of urban land -Urban land ceiling and regulation act - Efficiency of building bye lass - Residential Densities
- d) **Housing the urban poor :**Introduction Living conditions in slums Approaches and strategies for housing urban poor

UNIT II

Development and adoption of low cost housing technology

Introduction - Adoption of innovative cost effective construction techniques - Adoption of precast elements in partial prefatroices - Adopting of total prefactcation of mass housing in India- General remarks on pre cast rooting/flooring systems -Economical wall system - Single Brick thick loading bearing wall - 19cm thick load bearing masonry walls - Half brick thick load bearing wall – Fly-ash gypsum thick for masonry - Stone Block masonry - Adoption of precast R.C. plank and join system for roof/floor in the building

UNIT III

Alternative building materials for low cost housing

Introduction - Substitute for scarce materials – Ferro-cement - Gypsum boards - Timber substitutions - Industrial wastes - Agricultural wastes - alternative building maintenance

Low cost Infrastructure services:

Introduce - Present status - Technological options - Low cost sanitation - Domestic wall - Water supply, energy

UNIT IV

Rural Housing: Introduction traditional practice of rural housing continuous - Mud Housing technology Mud roofs - Characteristics of mud - Fire treatment for thatch roof - Soil stabilization - Rural Housing programs

UNIT V

Housing in Disaster prone areas:

Introduction – Earthquake - Damages to houses - Traditional prone areas - Type of Damages and Railways of non-engineered buildings - Repair and restore action of earthquake Damaged non-engineered buildings recommendations for future constructions. Requirement's of structural safety of thin precast roofing units against Earthquake forces Status of R& D in earthquake strengthening measures - Floods, cyclone, future safety

Textbooks:

- 1. Building materials for low income houses International council for building research studies and documentation.
- 2. Hand book of low cost housing by A.K.Lal Newage international publishers.
- 3. Low cost Housing G.C. Mathur by South Asia Books

Reference Books:

- 1. Properties of concrete Neville A.m. Pitman Publishing Limited, London.
- 2. Light weight concrete, Academic Kiado, Rudhai.G Publishing home of Hungarian Academy of Sciences 1963.
- 3. Modern trends in housing in developing countries A.G. Madhava Rao, D.S. Rama chandra Murthy &G.Annamalai. E. & F. N. Spon Publishers

Online Learning Resources:

https://nptel.ac.in/courses/124107001

(20A02704) IoT APPLICATIONS IN ELECTRICAL ENGINEERING (Open Elective Course – III)

Course Objectives:

- Understand basics of Internet of Things and Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- Analyze motion less and motion detectors in IoT applications
- Understand about Analyze applications of IoT in smart grid
- Apply the concept of Internet of Energy for various applications

Course Outcomes:

- Understand the concept of IoT in Electrical Engineering
- Analyze various types of motionless sensors and various types of motion detectors
- Apply various applications of IoT in smart grid

• Design future working environment with Energy internet

UNIT I SENSORS

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

UNIT II OCCUPANCY AND MOTION DETECTORS

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

UNIT III MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

UNIT IV IoT FOR SMART GRID

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

UNIT V INTERNET of ENERGY (IoE)

Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid

Textbooks:

- 1. Jon S. Wilson, Sensor Technology Hand book, Newnes Publisher, 2004
- 2. Tai Ran Hsu, MEMS and Microsystems: Design and manufacture, 1st Edition, Mc Grawhill Education, 2017
- Ersan Kabalci and Yasin Kabalci, From Smart grid to Internet of Energy, 1st Edition, Academic Press, 2019

Reference Books:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Kindle Edition, Morgan Kaufmann Publisher, 2016
- Yen Kheng Tan and Mark Wong, Energy Harvesting Systems for IoT Applications: Generation, Storage and Power Management, 1st Edition, CRC Press, 2019

3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, Internet of Things, Wiley, 2019

Online Learning Resources:

1.<u>https://onlinecourses.nptel.ac.in/noc22_cs96/preview</u>

- 2. https://nptel.ac.in/courses/108108123
- 3. https://nptel.ac.in/courses/108108179

(20A03704) PRODUCT DESIGN AND DEVELOPMENT (Open Elective-III)

Course Objectives:

- To Design products creatively while applying engineering design principles.
- To Apply principles of human factors, ethics and environmental factors in product design.
- To Work in groups or individually in their pursuit of innovative product design.
- To implement value design for optimum product cost.

Course Outcomes: After successful completion of the course, the student will be able to

- Apply knowledge of basic science and engineering fundamentals
- Undertake problem identification, formulation and solution
- Understanding of the principles of sustainable design and development
- Understanding of professional and ethical responsibilities and commitment to them

UNIT I Product Development Process

General problem-solving process - Flow of Work during the process of designing - Activity Planning Timing and scheduling, Planning Project and Product Costs - Effective Organization Structures -Interdisciplinary Cooperation, Leadership and Team behaviour.

UNIT II Task Clarification

Importance of Task Clarification - Setting up a requirements list - Contents, Format, Identifying the requirements, refining and extending the requirements, Compiling the requirements list, Examples. Using requirements lists - Updating, Partial requirements lists, Further uses - Practical applications of requirements lists.

UNIT III Conceptual Design

Steps in Conceptual Design. Abstracting to identify the essential problems - Aim of Abstraction, Broadening the problem. Formulation, Identifying the essential problems from the requirements list, establishing functions structures, Overall function, Breaking a function down into sub-functions. Developing working structures - Searching for working principles, Combining Working Principles, Selecting Working Structures, Practical Application of working structures. Developing Concepts - Firming up into principle solution variants, Evaluating principle solution variants, Practical Applications of working structures. Examples of Conceptual Design - One Handed Household Water Mixing Tap, Impulse - Loading Test Rig.

UNIT IV Embodiment Design

Steps of Embodiment Design, Checklist for Embodiment Design Basic rules of Embodiment Design Principles of Embodiment Design - Principles of Force Transformations, Principles of Division of Tasks, Principles of Self-Help, Principles of Stability and Bi-Stability, Principles of Fault-Free Design Guide for Embodiment Design - General Considerations, Design to allow for expansion, Design to allow for creep and relaxation, Design against Corrosion, Design to minimize wear, Design to Ergonomics, Design for Aesthetics, Design for Production, Design for Assembly, Design for Maintenance, Design for Recycling, Design for Minimum risk, Design to standards. Evaluation of Embodiment Designs.

UNIT V Mechanical Connections, Mechatronics And Adaptronics:

Mechanical Connections - General functions and General Behaviour, Material connections, From Connections, Force connections, Applications. Mechatronics - General Architecture and Terminology, Goals and Limitations, Development of Mechatronic Solution, Examples. Adaptronics - Fundamentals and Terminology, Goals and Limitations, Development of Adaptronics Solutions, Examples.

Textbooks:

- 1. G.Paul; W. Beitzetal, Engineering Design, Springer International Education, 2010.
- 2. Kevin Otto: K. Wood, Product Design And Development, Pearson Education, 2013. **References:**
 - 1. Kenith B. Kahu, Product Planning Essentials, Yes dee Publishing, 2011.
 - 2. K.T. Ulrich, Product Design and Development, TMH Publishers, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112107217
- https://nptel.ac.in/courses/112104230
- https://www.youtube.com/watch?v=mvaqZAFdL6U
- https://nptel.ac.in/courses/107103082
- https://quizxp.com/nptel-product-design-and-manufacturing-assignment-5/

(20A04704) ELECTRONIC SENSORS (Open Elective Course –III)

Course Objectives:

- Learn the characterization of sensors.
- Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- Understand the concepts of Electro analytic and smart sensors
- Able to use sensors in different applications

Course Outcomes:

- Learn about sensor Principle, Classification and Characterization.
- Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- Understand the basic concepts of Smart Sensors
- Design a system with sensors

UNIT I

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors

UNIT II

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor ,Dielectric Constant and Refractive Index thermo sensors, Helium Low Temperature Thermometer ,Nuclear Thermometer ,Magnetic Thermometer ,Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

UNIT III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors,

Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, Xray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen

Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters,

Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation Sensors –Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing – Sensors for environmental Monitoring

Textbooks:

- 1. "Sensors and Transducers D. Patranabis" PHI Learning Private Limited., 2003.
- 2. Introduction to sensors- John veteline, aravindraghu, CRC press, 2011

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villeyvaltokari, 1st edition, maker media,2014.
- 3. Sensors handbook- Sabriesoloman, 2nd Ed. TMH, 2009

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech

L T P C 3 0 0 3

(20A04506) PRINCIPLES OF COMMUNICATION SYSTEMS

Course Objectives:

- To understand the concept of various modulation schemes and multiplexing.
- To apply the concept of various modulation schemes to solve engineering problems.
- To analyse various modulation schemes.
- To evaluate various modulation scheme in real time applications.

Course Outcomes:

- Understand the concept of various modulation schemes and multiplexing
- Apply the concept of various modulation schemes to solve engineering problems
- Analyse various modulation schemes, and evaluate various modulation scheme in real time applications

UNIT I Amplitude Modulation

Introduction to Noise and Fourier Transform. An overview of Electronic Communication Systems. Need for Frequency Translation, Amplitude Modulation: DSB-FC, DSB-SC, SSB-SC and VSB. Frequency Division Multiplexing. Radio Transmitter and Receiver.

UNIT II Angle Modulation

Angle Modulation, Tone modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulation and Demodulation. Stereophonic FM Broadcasting.

UNIT III Pulse Modulation

Sampling Theorem: Low pass and Band pass Signals. Pulse Amplitude Modulation and Concept of Time Division Multiplexing. Pulse Width Modulation. Digital Representation of Analog Signals.

UNIT IV Digital Modulation

Binary Amplitude Shift Keying, Binary Phase Shift Keying and Quadrature Phase Shift Keying, Binary Frequency Shift Keying. Regenerative Repeater.

UNIT VCommunication Systems

Satellite, RADAR, Optical, Mobile and Computer Communication (Block diagram approach only).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Textbooks:

1. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill Publishing Company Ltd., 2008.

- 1. B. P. Lathi, Zhi Ding and Hari M. Gupta, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press, 2017.
- 2. K. Sam Shanmugam "Digital and Analog Communication Systems", Wiley India Edition, 2008.

(20A27704) HUMAN NUTRITION (OPEN ELECTIVE-III)

Course Objectives:

- To get knowledge on Concepts and content of nutrition source and metabolic functions.
- To know about Balanced diets for various groups; Diets and disorders, recommended dietary allowances
- To learn about Epidemiology of under nutrition and over nutrition.
- To understand Nutrition and immunity.

Course Outcomes:

- To study the Salient features of Concepts and content of nutrition, Malnutrition, Nutrition education
- Assessment of nutritional status, disorders Food fad and faddism.

UNIT I

Concepts and content of nutrition: Nutrition agencies; Nutrition of community; Nutritional policies and their implementation; Metabolic function of nutrients. Nutrients: Sources, functions, digestion, absorption, assimilation and transport of carbohydrates, proteins and fats in human beings;

UNIT II

Water and energy balance: Water intake and losses; Basal metabolism- BMR; Body surface area and factors affecting BMR Formulation of diets: Classification of balanced diet; Balanced diets for various groups; Diets and disorders. Recommended dietary allowances (RDA); For various age group; According physiological status; Athletic and sports man; Geriatric persons

UNIT III

Malnutrition: Type of Malnutrition; Multi-factorial causes; Epidemiology of under nutrition and over nutrition; Nutrition and immunity.

UNIT IV

Nutrition education Assessment of nutritional status: Diet surveys; Anthropometry; Clinical examination; Biochemical assessment; Additional medical information

UNIT V

Blood constituents; Hormone types; Miscellaneous disorders Food fad and faddism. Potentially toxic substances in human food.

Textbooks:

- 1. Swaminathan M, Advanced Text Book on Food & Nutrition (Volume I and II) , The Bangalore Printing and Publishing Co.Ltd, Bangalore. 2006
- 2. Stewart Truswell, ABC of Nutrition (4th edition), BMJ Publishing Group 2003, ISBN 0727916645.
- 3. Martin Eastwood, Principles of Human Nutrition, Blackwell Publishing, Boca Rotan

- 1. Mike Lean and E. Combet ,Barasi's Human Nutrition A Health Perspective , Second Edition CRC Press, London
- 2. Introduction to Human Nutrition, Micheal J. G., Susan A.L. Aedin C. and Hester H.V, Wiley-Blackwell Publication, UK 2009, ISBN 9781405168076
- 3. Bogert L.J., Goerge M.B, Doris H.C., Nutrition and Physical Fitness, W.B. Saunders Company, Toronto, Canada

(20A54702) NUMERICAL METHODS FOR ENGINEERS (OPEN ELECTIVE-III)

Course Objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

Course Outcomes:

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

UNIT I Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

UNIT II Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

UNIT III Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae Gauss forward and backward formula, Stirling's formula, Bessel's formula

UNIT IV Numerical Integration

Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule

UNIT V Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

https://slideplayer.com/slide/8588078/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3 (20A56702) SENSORS AND ACTUATORS FOR ENGINEERING APPLICATIONS

(OPEN ELECTIVE-III)

Course Objectives:

- To provide exposure to various kinds of sensors and actuators and their engineering applications.
- To impart knowledge on the basic laws and phenomenon behind the working of sensors and actuators
- To enlighten the operating principles of various sensors and actuators
- To educate the fabrication of sensors
- To identify the required sensor and actuator for interdisciplinary application

Course Outcomes:

- To recognize the need of sensors and actuators
- To understand working principles of various sensors and actuators
- To identify different type of sensors and actuators used in real life applications
- To exploit basics in common methods for converting a physical parameter into an electrical quantity
- To make use of sensors and actuators for different applications

UNIT I Introduction to Sensors and Actuators

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Materials used and their fabrication process: Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Hydraulic, Pneumatic, Mechanical, Electrical, Magnetic, Electromagnetic, piezo-electric and piezo-resistive actuators, Simple applications of Actuators.

UNIT II Temperature and Mechanical Sensors

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermoresistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermoelectric sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: strain gauges, tactile sensors, Pressure sensors: semiconductor, piezoresistive, capacitive, VRP.

UNIT III Optical and Acoustic Sensors

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo-resistors based sensors, Photomultipliers, Infrared sensors: thermal, PIR, thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones.

UNIT IV Magnetic, Electromagnetic Sensors and Actuators

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magneto-strictive sensors and actuators, Voice coil actuators (speakers and speaker-like actuators).

UNIT V Chemical and Radiation Sensors

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Geiger-Mueller counters, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.
- 5. Principles of Industrial Instrumentation By D. Patranabhis

NPTEL courses links

https://onlinecourses.nptel.ac.in/noc21_ee32/preview

$\frac{1}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{3}$

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, coprecipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

- 1. Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 3. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

С

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR **B.Tech IV-I Sem** LTP 3 0 0 3

(20A01705) HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT PRACTICES (Open Elective Course-IV)

Course Objectives:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard. control, environmental issues and management
- To get exposed to accidents modeling, accident investigation and reporting, concepts of. • HAZOP and PHA
- To be familiar with safety measures in design and process operations.
- To get exposed to risk assessment and management, principles and methods

Course Outcomes:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard.
- To get exposed to accidents modelling, accident investigation and reporting control, • environmental issues and management
- To get concepts of HAZOP and PHA. •
- To be familiar with safety measures in design and process operations.

UNIT I

Introduction to safety, health and environmental management - Basic terms and their definitions -Importance of safety - Safety assurance and assessment - Safety in design and operation - Organizing for safety.

UNIT II

Hazard classification and assessment - Hazard evaluation and hazard control.

Environmental issues and Management - Atmospheric pollution - Flaring and fugitive release -Water pollution - Environmental monitoring - Environmental management.

UNIT III

Accidents modelling - Release modelling - Fire and explosion modelling - Toxic release and dispersion Modelling

UNIT IV

Accident investigation and reporting - concepts of HAZOP and PHA.

Safety measures in design and process operations - Inserting, explosion, fire prevention, sprinkler systems.

UNIT V

Risk assessment and management - Risk picture - Definition and characteristics - Risk acceptance criteria - Quantified risk assessment - Hazard assessment - Fatality risk assessment - Risk management principles and methods.

Textbooks:

- 1. Process Safety Analysis, by Skelton. B, Gulf Publishing Company, Houston, 210pp., 1997.
- 2. Risk Management with Applications from Offshore Petroleum Industry, by TerjeAven and Jan Erik Vinnem, Springer, 200pp., 2007.

Reference Books:

- 1. Introduction to Safety and Reliability of Structures, by Jorg Schneider
- 2. Structural Engineering Documents Vol. 5, International Association for Bridge and

Structural Engineering (IABSE), 138pp., 1997.

- 3. Safety and Health for Engineers, by Roger L. Brauer, John Wiley and Sons Inc. pp. 645-663, 2006.
- 4. Health, Safety and Environmental Management in Offshore and Petroleum Engineering, Srinivasan Chandrasekaran, John Wiley and Sons, 2016.

Online Learning Resources:

https://nptel.ac.in/courses/114106017

$\frac{1}{3}$ 0 0 3

(20A02705) RENEWABLE ENERGY SYSTEMS (Open Elective Course – IV)

Course Objectives:

- Understand various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Analyze solar thermal and solar PV systems
- Understand the concept of geothermal energy and its applications, biomass energy, the concept of Ocean energy and fuel cells.

Course Outcomes:

- Understand various alternate sources of energy for different suitable application requirements
- Understand the concepts of solar energy generation strategies and wind energy system
- Analyze Solar and Wind energy systems
- Understand the basics of Geothermal Energy Systems, various diversified energy scenarios of ocean, biomass and fuel cells

UNIT I SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV ENERGY SYSTEMS

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

UNIT III WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; windmill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

UNIT IV GEOTHERMAL ENERGY

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT V MISCELLANEOUS ENERGY TECHNOLOGIES

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration **Fuel cell**: Principle of working of various types of fuel cells and their working, performance and limitations.

Textbooks:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

Reference Books:

- S. P. Sukhatme, "Solar Energy",3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
 B H Khan , " Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

3 0 0 3

(20A03705) INTRODUCTION TO COMPOSITE MATERIALS (Open Elective-IV)

Course Objectives:

- Introduce composite materials and their applications.
- Build proper background for stress analysis in the design of composite structures.
- Familiarize various properties of composite materials.
- Focus on biodegradable composites.

Course Outcomes:

- Identify the practical applications of composites. (L3)
- Identify the polymer matrix composites. (L3)
- Classify of bio- degradable composites. (L2)
- Outline the various types of ceramic matrix materials. (L2)

UNIT I Introduction to composites

Fundamentals of composites – Definition – classification– based on Matrix – based on structure – Advantages and applications of composites - Reinforcement – whiskers – glass fiber – carbon fiber - Aramid fiber – ceramic fiber – Properties and applications.

UNIT II Polymer matrix composites

Polymers - Polymer matrix materials – PMC processes - hand layup processes – spray up processes – resin transfer moulding – Pultrusion – Filament winding – Auto clave based methods - Injection moulding – sheet moulding compound – properties and applications of PMCs.

UNIT III Metal matrix composites

Metals - types of metal matrix composites – Metallic Matrices. Processing of MMC – Liquid state processes – solid state processes – In-situ processes. Properties and applications of MMCs.

UNIT IV Ceramic matrix composites

Ceramic matrix materials – properties – processing of CMCs –Sintering - Hot pressing – Infiltration – Lanxide process – Insitu chemical reaction techniques – solgel polymer pyrolsis –SHS - Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Properties and Applications of CCMs.

UNIT V Advances & Applications of composites

Advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbonfibre perform. Properties and applications of Carbon-carbon composites. Composites for aerospace applications.Bio degradability, introduction of bio composites, classification, processing of bio composites, applications of bio composites - Mechanical, Biomedical, automobile Engineering.

Textbooks:

- 1. Chawla K.K, Composite materials, 2/e, Springer Verlag, 1998.
- 2. Mathews F.L. and Rawlings R.D., Chapman and Hall, Composite Materials: Engineering and Science, 1/e, England, 1994.

Reference Books:

- 1. H K Shivanand, B V Babu Kiran, Composite Materials, ASIAN BOOKS, 2011.
- 2. A.B. Strong, Fundamentals of Composite Manufacturing, SME Publications, 1989.
- 3. S.C. Sharma, Composite materials, Narosa Publications, 2000.
- 4. Maureen Mitton, Hand Book of Bio plastics & Bio composites for Engineering applications, John Wiley publications, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112104229
- https://nptel.ac.in/courses/112104168
- https://nptel.ac.in/courses/101104010
- https://nptel.ac.in/courses/105108124
- https://nptel.ac.in/courses/112104221

(20A04705) MICROCONTROLLERS & APPLICATIONS (Open Elective Course –IV)

Course Objectives:

- Describe the Architecture of 8051 Microcontroller and Interfacing of 8051 to external memory.
- Write 8051 Assembly level programs using 8051 instruction set.
- Describe the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051.

Course Outcomes:

- Understand the importance of Microcontroller and Acquire the knowledge of Architecture of 8051 Microcontroller.
- Apply and Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to using 8051 I/O ports.
- Develop the 8051 Assembly level programs using 8051 Instruction set
- Design the Interrupt system, operation of Timers/Counters and Serial port of 8051

UNIT 1 8051 Microcontroller:

Microprocessor Vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture- Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

UNIT II

Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples to use these instructions.

UNIT III

8051 Stack, Stack and Subroutine instructions. Simple Assembly language program examples to use subroutine instructions.8051 Timers and Counters – Operation and Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode- 2 on a port pin.

UNIT IV

8051 Serial Communication- Basics of Serial Data Communication, RS- 232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.8051 Interrupts. 8051 Assembly language programming to generate an external interrupt using a switch.

UNIT V

8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Interfacing with relays and opto isolators, Stepper Motor Interfacing, DC motor interfacing, PWM generation using 8051.

Textbooks:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", PHI, 2006 / Pearson, 2006.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning.

- 1. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.

(20A04706) PRINCIPLES OF CELLULAR AND MOBILE COMMUNICATIONS Course Objectives:

- To understand the concepts and operation of cellular systems.
- To apply the concepts of cellular systems to solve engineering problems.
- To analyse cellular systems for meaningful conclusions.
- To evaluate suitability of a cellular system in real time applications.
- To design cellular patterns based on frequency reuse factor.

Course Outcomes:

At the end of the course, the student should be able to

- Understand the concepts and operation of cellular systems (L1)
- Apply the concepts of cellular systems to solve engineering problems (L2).
- Analyse cellular systems for meaningful conclusions, Evaluate suitability of a cellular system in real time applications (L3).
- Design cellular patterns based on frequency reuse factor (L4).

UNIT I Introduction to Cellular Mobile Systems

Why cellular mobile communication systems? A basic cellular system, Evolution of mobile radio communications, Performance criteria, Characteristics of mobile radio environment, Operation of cellular systems. Examples for analog and digital cellular systems.

UNIT II Cellular Radio System Design

General description of the problem, Concept of frequency reuse channels, Cochannel interference reduction, Desired C/I ratio, Cell splitting and sectoring.

UNIT III Handoffs and Dropped Calls

Why handoffs and types of handoffs, Initiation of handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff and soft handoff, Cell-site handoff, Intersystem handoff. Introduction to dropped call rate.

UNIT IV Multiple Access Techniques for Wireless Communications

Introduction, Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Access and Space Division Multiple Access.

UNIT V Digital Cellular Systems

Global System for Mobile Systems, Time Division Multiple Access Systems, Code Division Multiple Access Systems. Examples for 2G, 3G and 4G systems. Introduction to 5G system.

Textbooks:

- 1. William C. Y. Lee, "Mobile Cellular Telecommunications", 2ndEdition, McGraw-Hill International, 1995.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", 2ndEdition, PHI, 2004.

References:

1. Aditya K. Jagannatham "Principles of Modern Wireless Communications Systems – Theory and Practice", McGraw-Hill International, 2015.

$\frac{1}{3}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{3}$

(20A27705) WASTE AND EFFLUENT MANAGEMENT (OPEN ELECTIVE-IV)

Course Objectives:

- To understand the wastewater treatment process.
- To gain knowledge on waste disposal in various ways.
- To know about advances in wastewater treatment.

Course Outcomes:

• Acquires knowledge on technologies used for chemical and biological methods of waste water and effluent treatment

UNIT I

Wastewater Treatment an Overview: Terminology – Regulations – Health and Environment Concerns in waste water management – Constituents in waste water inorganic – Organic and metallic constituents. Process Analysis and Selection: Components of waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Balance Analysis – Modeling of ideal and non ideal flow in Reactors – Process Selection

UNIT II

Waste disposal methods – Physical, Chemical & Biological; Economical aspects of waste treatment and disposal. Treatment methods of solid wastes: Biological composting, drying and incineration; Design of Solid Waste Management System: Landfill Digester, Vermicomposting Pit.

UNIT III

Introduction: Classification and characterization of food industrial wastes from Fruit and Vegetable processing industry, Beverage industry; Fish, Meat & Poultry industry, Sugar industry and Dairy industry.

Chemical Unit Processes: Role of unit processes in waste water treatment chemical coagulation – Chemical precipitation for improved plant performance chemical oxidation – Neutralization – Chemical Storage

UNIT IV

Biological Treatment: Overview of biological Treatment – Microbial metabolism – Bacterial growth and energetics – Aerobic biological oxidation – Anaerobic fermentation and oxidation – Trickling filters – Rotating biological contractors – Combined aerobic processes – Activated sludge film packing.

UNIT V

Advanced Wastewater Treatment: Technologies used in advanced treatment – Classification of technologies. Removal of Colloids and suspended particles – Depth Filtration – Surface Filtration – Membrane Filtration – Ion Exchange – Advanced oxidation process.

Textbooks:

- 1. Herzka A & Booth RG; "Food Industry Wastes: Disposal and Recovery"; Applied Science Pub Ltd. 1981,
- 2. Fair GM, Geyer JC & Okun DA; "Water & Wastewater Engineering"; John Wiley & Sons, Inc. 1986,

- 1. GE; "Symposium: Processing Agricultural & Municipal Wastes"; AVI. 1973,
- 2. Inglett Green JH & Kramer A; "Food Processing Waste Management"; AVI. 1979,
- 3. Rittmann BE & McCarty PL; "Environmental Biotechnology: Principles and Applications"; Mc-Grow-Hill International editions2001,.
- 4. Bhattacharyya B C & Banerjee R; "Environmental Biotechnology"; Oxford University Press.
- 5. Bartlett RE; "Wastewater Treatment; Applied Science" Pub Ltd.
- 6. G. Tchobanoglous, FI Biston, "Waste water Engineering Treatment and Reuse": Mc Graw Hill, 2002.
- "Industrial Waste Water Management Treatment and Disposal by Waste Water" 3rd Edition Mc Graw Hill 2008

(20A54703) NUMBER THEORY AND ITS APPLICATIONS (OPEN ELECTIVE-IV)

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

- Understand number theory and its properties.
- Understand principles on congruences
- Develop the knowledge to apply various applications
- Develop various encryption methods and its applications.

UNIT I Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT II Congruences

Introduction to congruences -Linear congruences-The Chinese remainder theorem-Systems of linear congruences

UNIT III Applications of Congruences

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem-Euler's p hi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT IV Finite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-fermat factorization and factor bases.

UNIT V Cryptology

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers-Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm-Some applications to computer science.

Textbooks:

- 1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
- 2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

- 1. An Introduction To The Theory Of Numbers, <u>Herbert S. Zuckerman</u>, <u>Hugh L.</u> <u>Montgomery</u>, <u>Ivan Niven</u>, wiley publishers
- 2. Introduction to Analytic number theory-Tom M Apostol, springer
- 3. Elementary number theory, VK Krishnan, Universities press

Online Learning Resources:

https://www.slideshare.net/ItishreeDash3/a-study-on-number-theory-and-its-applications

3 0 0 3

(20A56703) SMART MATERIALS AND DEVICES (OPEN ELECTIVE-IV)

Course Objectives:

- To provide exposure to smart materials and their engineering applications.
- To impart knowledge on the basics and phenomenon behind the working of smart materials
- To enlighten the properties exhibited by smart materials
- To educate various techniques used to synthesize and characterize smart materials
- To identify the required smart material for distinct applications/devices

Course Outcomes:

- to recognize the need of smart materials
- to understand the working principles of smart materials
- to know different techniques used to synthesize and characterize smart materials
- to exploit the properties of smart materials
- to make use of smart materials for different applications

UNIT I

Introduction: Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect.

UNIT II: Properties of Smart Materials: Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials

UNIT III: Synthesis of smart materials: Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloying and Thin film deposition techniques: Chemical etching, Sol-gel, spray pyrolysis.

UNIT IV: Characterization techniques: X-ray diffraction, Raman spectroscopy (RS), Fouriertransform infrared reflection (FTIR), UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy, Atomic force microscopy (AFM) and Differential Scanning Calorimetry (DSC).

UNIT V: Materials and Devices: Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials, Electro-rheological and Magneto-rheological materials and Composite materials.

Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of the smart materials.

Textbooks:

- 1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc.2002
- 2. Smart Materials and Structures M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

References:

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2ndEdn., John Wiley & Sons, 2003.
- 4. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic 1. Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, 2002.
- 5. Optical Metamaterials: Fundamentals and Applications -W. Cai and V. Shalaev, springer,2010.
- 6. Smart Materials and Structures P. L Reece, New Research, Nova Science, 2007

NPTEL courses links

https://nptel.ac.in/courses/112/104/112104173/ https://nptel.ac.in/courses/112/104/112104251/

https://nptel.ac.in/content/storage2/courses/112104173/Mod 1 smart mat lec

(20A51703) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT (OPEN ELECTIVE-IV)

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

Course Outcomes:

• Recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

UNIT I: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

UNIT II: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogenous catalysts, Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

UNIT III: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water-based coatings, Ionic liquids as catalyst and solvent

UNIT IV: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feedstocks: Chemicals from Renewable Feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry: Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

UNIT V: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Textbooks:

- 1. M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- 2. Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition, Oxford

University Press, USA

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC Press, 2010.
- 2. Edited by AlvisePerosa and Maurizio Selva , Hand Book of Green chemistry Volume 8:Green Nanoscience, wiley-VCH, 2013.

HONOURS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.TechCSE(DS) L T P C

L I I C 3 1 0 4

(20A32H01) DATA SCIENCE FOR BUSINESS

Pre-requisite Data Science Course Objectives: Expose with the basic rudiments of business intelligence system • Expose with different data analysis tools and techniques **Course Outcomes:** At the end of the course the students will be able to Understand the fundamentals of business intelligence. Applying link to data mining with business intelligence. • Apply various modelling techniques. • Understand the data analysis and knowledge delivery stages. Apply business intelligence methods to various situations and decide on appropriate technique. **UNIT I** Lecture 8 Hrs Introduction – Business problems and Data Science Solutions, Introduction to Predictive modeling: From Correlation to Supervised Segmentation UNIT II Lecture 8 Hrs Fitting the Data-Fitting a Model to Data, Overfitting and its Avoidance Lecture 9Hrs **UNIT III** Similarity, Neighbors, and Clusters, Decision Analytic Thinking: What is a Good model UNIT IV Lecture 8 Hrs Representing and Mining text, Decision Analytic Thinking II: Toward Analytic Engineering Lecture 9 Hrs UNIT V Other Data Science Tasks and Techniques, Data Science and Business Strategy **Textbooks:** 1. Foster Provost and Tom Fawcett, Data Science for Business, O'Reilly, 2013. **Reference Books:** 1. Efraim Turban, Ramesh Sharda, DursunDelen, "Decision Support and Business Intelligence Systems", 9 th Edition, Pearson 2013. 2. Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete ProjectLifecycle of Decision Making", Addison Wesley, 2003.

- 3. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for DecisionMaking", Wiley Publications, 2009.
- 4. David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager'sGuide", Second Edition, 2012.

Online Learning Resources:

1. Edx: IBM Data Warehousing and BI Analytics

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.TechCSE(DS) L T P C

3 1 0 4

(20A32H02) SOFTWARE PROJECT MANAGEMENT USING AGILE

Pre-requisite Software Engineering Fundamentals

Course Objectives:

- Teach how to manage a Project
- Discuss Agile method of handling projects

Course Outcomes:

After completion of the course, students will be able to

- Apply Agile methodology for software development
- Critically analyze quality of software
- Estimate the software cost

UNIT I Introduction, The Agile Business Case Lecture 8Hrs History, Background, and the Manifesto, Traditional Lifecycle, Agile Lifecycle, Scaling for Enterprise Agile, Four Agile Methodologies

The Agile Business Case: The Business Case, Business Value Models, Project Balance Sheet, Building the Business Case by Levels

UNIT II Quality in the Agile Space Lecture 9Hrs Quality Values and Principles, Thought Leaders and Agile Quality, Sampling for Quality Validation, Agile in the Waterfall: First Principles and Requisite Conditions, The Black Box, Interfaces, and Connectivity, Governing

UNIT III Scope and Requirements Lecture 9Hrs Developing the Scope and Requirements: Agile Scope, Envisioning, Requirements, Planning at a Distance

Planning and Scheduling: Planning in the Enterprise Context, Scheduling, Other Plans in the Enterprise Agile Project

UNIT IVEstimating Cost and ScheduleLecture 8HrsThe Nature of Estimates, Drivers on Cost and Schedule, Building EstimatesTeams Are Everything: The Social Unit, Principle and Values Guide Teams, Teams Are BuildingBlocks, Some Teams Work; Others Do Not, Matrix Management in the Agile Space

UNIT V Governance, Managing Value

Governance Is Built on Quality Principles, Governance Verifies Compliance

Managing Value: Defining and Accounting for Value, Burn-down Charts and Value Scorecards **Textbooks:**

1. John C. Goodpasture, PMP, "Project Management the Agile Way", Second Edition, J. Ross Publishing 2016.

Reference Books:

1. Kalpesh Ashar, Agile Essentials you always wanted to know, Vibrant publishers, 2020

2. Jutta Eckstein, Agile Software development in the large: Diving into the Deep, Jutta Eckstein Publisher, 2022

Online Learning Resources:

1. Coursera: Agile Project Management offered by Google

2. Coursera: Alex Cowan, Agile Development Specialization

Lecture 8Hrs

I poturo OUro

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.TechCSE(DS) L T P C

(20A30H03) ETHICS AND PRIVACY IN AI

Pre-requisite Artificial Intelligence

Course Objectives:

The course is designed to

- To understand the need for ensuring ethics in AI
- To understand ethical issues with the development of AI agents
- To apply the ethical considerations in different AI applications
- To evaluate the relation of ethics with nature
- To overcome the risk for Human rights and other fundamental values

Course Outcomes:

After completion of the course, students will be able to

- Understand the ethical issues in the development of AI agents
- Learn the ethical considerations of AI with perspectives on ethical values
- Apply the ethical policies in AI based applications and Robot development
- To implement the AI concepts to societal problems by adapting the legal concepts by securing fundamental rights.
- This study will help to overcome the evil genesis in the concepts of AI.

UNIT I Introduction, What Do We Need to Understand About Ethics? Lecture 8

Hrs

Introduction: Artificial Intelligence and Ethics, Why Ethics in AI? Why Now? Current Initiatives in AI and Ethics, Codes of Ethics in Context: Other Approaches to Ethical Questions in AI

What Do We Need to Understand About Ethics?: A Preliminary Plea: Ethics Is Not About' Banning' Things, Normative Ethical Theories, Ethics and Empirical Evidence, So Why Do We Even Need Ethics?, So, With What Sort of Issues Is Ethics Concerned?, Who(orWhat) Is The Proper Object of Moral Concerns, and How Widely Should Our Concerns Extend?, Four Domains of Ethics: Self, Friend, Stranger, World, What Counts as Adequate Justification and Argument in Ethics?, Moral Relativism, Moral Justification and AI, A Distributed Morality?, MoralAgents, Moral Motivation, AI, Codes of Ethics and the Law

UNIT II Does AI Raise Any Distinctive Ethical Questions? Codes of Professional Ethics Lecture 10 Hrs

DoesAIRaiseAnyDistinctiveEthicalQuestions? Methodology: Focusing in on Ethical Questions, Many Ethical Issues in AI Are Shared with Other Rapidly Developing Technology, Ethical Questions Arise from AI's Typical Use to Enhance, Supplement, or Replace the Work of Humans, We Also Need to Consider the Methods of Production of AI, Hype in AI and Implications for Methodology in Ethics

Codes of Professional Ethics: Introduction: The Varieties of Ethical Codes, Professional Codes of Ethics Tend to Have Certain Commonalities, Codes of Ethics and Institutional Backing, The Context of Codes of Ethics, Can Codes of Ethics Make the Situation Worse? Yes

UNIT IIIHow AI Challenges Professional Ethics, Developing Codes of Ethics Lecture 8

Amidst Fast Technological Change

How AI Challenges Professional Ethics: AI Professional Organisations and Companies, and the Nature of Its Development and Production, Gradients of Professional Power and Vulnerability in AI, A Third Layer of Complexity in Codes of Professional Ethics for AI: The Behaviour of Machines, The Authority of Any Resulting Codes.

Developing Codes of Ethics Amidst Fast Technological Change: Social, Cultural and Technological Change and Ethics, Social, Cultural, Economic and Technological Change: The Example of AI and Employment, Regulating for Whom? The Global Reach of AI, Universalism, and Relativism, Diversity in Participation as Part of the Solution.

UNIT

Lecture 9

IVSomeCharacteristicPitfallsinConsideringtheEthicsofAI,andWhattoDoAbou Hrs tThem, Some Suggestions for How to Proceed

Some Characteristic Pitfalls in Considering the Ethics of AI, and

What to Do About Them: The Idealisation of Human and of Machine Agency, Building Ethics into AI and the Idealisation of Moral Agency, Replacing and Enhancing Human Agency, Boundaries and AI, Addressing the Increased Gradient of Vulnerability, Common Language, Miscommunication and the Search for Clarity.

Some Suggestions for How to Proceed: Organisations and Codes, Procedures for Drawing Up and Implementing Codes, The Content of Codes, Thinking About Ethical Issuesin Developing and Implementing Codes of Ethics, Asilomar AI Principles

UNIT V An Introduction to Privacy Aspects of Information and CommunicationLecture 8Technologies, Data Mining in Large DatabasesHrs

Introduction, Privacy and the Internet, Privacy in Databases, Privacy in Ubiquitous Computing.

Data Mining in Large Databases — Strategies for Managing the Trade-Off Between Societal Benefit and Individual Privacy: Introduction, Examples of data-collecting institutions and data users, Strategies for controlling privacy, Measures of the utility of published data sets and outputs.

Textbooks:

- 1. Paula Boddington," Towards a Code of Ethics for Artificial Intelligence", Springer.
- 2. AgustiSolanas& Antoni Martínez-Ballesté "Advances in Artificial Intelligence for Privacy Protection and Security" World Scientific

Reference Books:

1. "Oxford Handbook of Ethics of AI", Markus D. Dubber frank pasqualesunit Das, oxford university press.

Online Learning Resources:

- 1. Coursera: Ethics of Artificial Intelligence
- 2. Coursera: Artificial Intelligence Privacy and Convenience

Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.TechCSE(DS) L T P

L T P C 3 1 0 4

(20A30H04) MEDICAL IMAGE DATA PROCESSING

Pre-requisite Computer Graphics Fundamentals

Course Objectives:

- Understand the significance of image process in medical industry
- Teach the process of extracting correct information in medical images

Course Outcomes:

The course is designed to

- Analyze medical images
- Apply image processing techniques to medical images

UNIT I Basics of Medical Image Sources Lecture 8 Hrs Radiology, The Electromagnetic Spectrum, Basic X-Ray Physics, Attenuation and Imaging, Computed Tomography, Magnetic Resonance Tomography, Ultrasound, Nuclear Medicine and Molecular Imaging, Other Imaging Techniques, Radiation Protection and Dosimetry Image Processing in Clinical Practice: Application Examples, Image Databases, Intensity Operations, Filter Operations, Segmentation, Spatial Transforms, Rendering and Surface Models, Registration, CT Reconstruction

UNIT II Image Representation Lecture 10 Hrs Pixels and Voxels, Gray Scale and Color Representation, Image File Formats, Dicom, Other Formats – Analyze 7.5, NIFTI And Interfile, Image Quality and The Signal-To-Noise Ratio, Practical Lessons Operations in Intensity Space: The Intensity Transform Function and The Dynamic Range, Windowing, Histograms and Histogram Operations, Dithering and Depth, Practical Lessons

UNIT III Filtering and Transformations, Segmentation Lecture 8 Hrs The Filtering Operation, The Fourier Transform, Other Transforms, Practical Lessons Segmentation: The Segmentation Problem, ROI Definition and Centroids, Thresholding, Region Growing, More Sophisticated Segmentation Methods, Morphological Operations, Evaluation of Segmentation Results

UNIT IV Spatial Transforms Lecture 9 Hrs Discretization – Resolution and Artifacts, Interpolation and Volume Regularization, Translation and Rotation, Reformatting, Tracking and Image-Guided Therapy

Rendering and Surface Models: Visualization, Orthogonal and Perspective Projection, and The Viewpoint, Raycasting, Surface–Based Rendering

UNIT VRegistration, CT ReconstructionLecture 8 HrsFusing Information, Registration Paradigms, Merit Functions, Optimization Strategies, Some
General Comments, Camera Calibration, Registration to Physical Space, Evaluation of Registration
Results

CT Reconstruction: Introduction, Radon Transform, Algebraic Reconstruction, Some Remarks on Fourier Transform and Filtering, Filtered Back projection

Textbooks:

1. Wolfgang Birkfellner, "Applied Medical Image Processing", Second Edition, CRC Press. **Reference Books:**

- 1. Sinha G.R., Medical Image Processing Concepts and Application, PHI, 2014
- 2. Geoff Dougherty, Digital Image Processing for Medical Applications, Cambridge university press, 2010

Online Learning Resources: Coursera: Pranav Rajpurkar, AI for Medical Diagnosis

